物理のかぎしっぽ 記事ソース/dx/dtをdxとdtに分けて良いの?

記事ソース/dx/dtをdxとdtに分けて良いの?

これはrst2hooktailの記事ソース保存・変換用です(詳細).

コンバート

最近コンバートされた結果: HTMLPDFTeX

公開・更新メニュー ▼▲

記事ソースの内容

============================================================
dx/dtをdxとdtに分けて良いの?
============================================================

短い記事です。積分をする時に $dx/dt = a(t)$ を $dx = a(t) dt$ 
として、 $x = \int dx = \int a(t) dt$ としますが、
少なくとも僕は最初とまどいました。
不思議な事に $dt = b(x) dx$ としても同じ結果が得られます。
それの根拠を探ります。

この記事ではこれを一般化して、

<tex>
f(x) dx = g(t) dt \tag{##}
</tex>

と、

<tex>
\dfrac{dx}{dt} = \dfrac{g(t)}{f(x)} \tag{##}
</tex>

の同値性を示します。

本題
===============

まず、式 $(1)$ から式 $(2)$ を導きます。
前提として、鎖の規則と逆関数の微分法を認めます。

準備として $f(x),g(t)$ の原始関数の一つを $F(x),G(t)$ 、積分定数 $C$ として、

<tex>
\int f(x) dx &= \int g(t) dt \\
F(x) &= G(t) + C \\
x &= F^{-1}(G(t)+C)
\tag{##}
</tex>

となります。ここで、式 $(3)$ の最終行の両辺を $t$ で微分します。

<tex>
\dfrac{dx}{dt} &= \dfrac{F^{-1}(G(t)+C)}{dt} \\
&= \dfrac{dF^{-1}(G(t)+C)}{d(G(t)+C)} \dfrac{d(G(t)+C)}{dt} (\because \rm{chain \ rule}) \\
&= \dfrac{dx}{dF} g(t) \\
&= \left( \dfrac{dF}{dx} \right)^{-1} g(t) (\because \rm{Inverse \ function \ differentiation}) \\
&= (f(x))^{-1} g(t) \\
&= \dfrac{g(t)}{f(x)}
\tag{##}
</tex>

こうして、式 $(1)$ から式 $(2)$ が導けました。
そして、逆をたどれば式 $(2)$ から式 $(1)$ を導けます。

よって、鎖の規則と逆関数の微分法を認めることで、
式 $(1)$ と式 $(2)$ は同値なものであると分かりました。

今日はこの辺で、お疲れさまでした。

@@author:クロメル@@
@@accept:2020-01-27@@
@@category:物理数学@@
@@id:separationOfdxdt@@
トップ   編集 凍結 差分 バックアップ 添付 複製 名前変更 リロード   新規 一覧 単語検索 最終更新   ヘルプ   最終更新のRSS
Modified by 物理のかぎプロジェクト PukiWiki 1.4.6 Copyright © 2001-2005 PukiWiki Developers Team. License is GPL.
Based on "PukiWiki" 1.3 by yu-ji Powered by PHP 5.2.17 HTML convert time to 0.056 sec.