崎間@物理のかぎプロジェクト

sakima@hooktail.org

\$Date: 2005-07-16 06:47:54 \$

物理のかぎプロジェクト*2 で使っている reStructuredText*2 から , \LaTeX によるいい感じの日本語 pdf ファイルをつくるためのスクリプト群です .

インストール

Linux

このディレクトリにあるスクリプト (拡張子 .sh および .rb)を実行可能 ($\operatorname{chmod} a + x$) にしたうえで , パスの通ったディレクトリに置いてください .

実行に必要なソフトウェアは

- Docutils*3
- \bullet lv*4
- Ruby
- platex
- jsarticle (日本語 LaTeX ドキュメントクラス)
- dvipdfmx
- ImageMagick

です.特に, Docutils と lv は最初から入っていない場合が多いので,確認しておいてください.

^{*2} http://hooktail.org/wiki/

^{*2} http://docutils.sourceforge.net/docs/ref/rst/restructuredtext.html

^{*3} http://docutils.sourceforge.net/

^{*4} http://www.ff.iij4u.or.jp/ n nrt/lv/

Cygwin

全てのスクリプトの文字コードを Shift-JIS に変換し,上記手順を踏んでください. Win32TeXの platex, dvipdfmx を使う場合,

kagipdf.sh

の最後の方にあるコンパイル命令をコメントアウトしてください.

使用方法

pdf 化したい reStructuredText を含むディレクトリに移動して:

\$ kagipdf.sh FILE

のように実行します.ここで FILE は reStructuredText 方式 (+ 物理のかぎプロジェクト仕様) で書いたテキストファイルです.画像ファイルを含む場合は,それらも同じディレクトリになければいけません.

設定ファイル

LaTeX 文字コードの設定

kagipdf.sh

の 45 行目あたりにある:

OUTENCODE="-Oej"

にて,出力 \LaTeX ファイルの文字コードを設定してください.デフォルトは Linux でよく使われる euc-jp です.

Windows 上の I∮TEX (Win32TeX)でコンパイルしたい場合は,出力文字コードを Shift-JIS に変える必要があると思います.

OUTENCODE="-0s"

と指定すれば , I⁴TEX ファイルの文字コードを Shift-JIS として出力します (改行コードも Windows に合わせます) .

LATEX の documentclass オプション

kagipdfTex.sh

の 30 行目あたり:

DOCUMENTCLASS="jsarticle"
DOCUMENTOPTIONS="11pt,a4paper"

にて, documentclass オプションを変更することができます(今のところ, フォントサイズ, ペーパーサイズを変更するとレイアウトが崩れます).

DOCUMENTCLASS="jsbook"
DOCUMENTOPTIONS="11pt,a4paper,report"

とすれば,表紙が別ページになります.

各ファイルについての説明

kagipdf.sh: フロントエンド.このシェルスクリプトからすべてを操作.

kagipdfAtat.rb: 「@@...@@」命令を処理.

kagipdfDispMath.rb: ディスプレイ数式命令を処理.

kagipdfEps.sh: png, jpg, gif ファイルから eps ファイルを作成.

kagipdflnMath.rb: インライン数式命令を処理.

kagipdfTex.sh: Docutils の rst2latex.py から出力される IATEX ソースを日本語向けにカスタマイズ.

変換処理の手順

物理のかぎプロジェクトで使用している「拡張 *5 を加えた $\operatorname{reStructuredText}$ ファイル」:

foo.txt

から,本来の仕様に従ったファイル:

foo.reST

を作ります.それを rst2latex.py でコンパイルして IPTEX ソースを出力,さらにプリアンブルなどに修正を加えて:

foo.tex

を生成します.それから後は, platex でコンパイル, dvipdfmx で pdf ファイルを生成, という通常の流れです.

また , figure および image ディレクティブにより画像を挿入している場合は , 挿入されている画像ファイルを変換して eps ファイルをつくり , \LaTeX ファイルには eps ファイルの画像を挿入します .

既知のバグ

● 数式相互参照拡張「#def」命令に未対応(platex コンパイルで止まる)

ToDo

- 一括処理できるようにする
- コンパイル用 IễTEX ファイル,出力用(Web フォームからの保存用等) IễTEX ファイルの 文字コード,改行コードを別々に設定できるようにする
- IAT_FX 命令に対する細かな調整
- 画像ファイルが別ディレクトリでも大丈夫なようにする(既に大丈夫かもしれない,未確認)
- ●「 < tex > ... < tex > 」(本来はすべて半角) そのものを出力できるようにする
- ●「\$…\$」(本来はすべて半角)そのものを出力できるようにする
- 「@@ reference:@@」に対応させる
- スタイルファイルを切り替えることにより、出力レイアウトをカスタマイズ可能にする(そうすればレポートや論文にも使えますね!)

更新記録

• [2005-07-16] 公開 (Ver.0.1.0).

^{*5} IAT $_{
m E}$ X 数式命令呼び出しの簡素化等.詳細は http://tinyurl.com/czukc を参照してください.