物理のかぎしっぽ 記事ソース/留数定理の積分路が原点を囲む囲まないかの違いについて のバックアップ差分(No.2)

#rst2hooktail_source
 ============================================================
 留数定理の積分路が原点を囲む囲まないかの違いについて
 ============================================================
 
 この記事では、$R,r,t$ を実数とした時、 $\Gamma : z=Re^{it} + r \ (t: 0 \to 2\pi)$ とした時の $\int_\Gamma \dfrac{dz}{z}$ を考えます。工学的な記述であって、あまり数学的厳密性はありません。
 
 計算の実行
 ====================
 
 上に述べたとおりの条件で、積分を行います。 $dz = i Re^{it} dt$ より、
 
 <tex>
 \int_\Gamma \dfrac{dz}{z} 
 &= \int_{t=0}^{2 \pi} \dfrac{iRe^{it}}{Re^{it} + r} dt \\
 &= \left[ Log|Re^{it} + r| + i \phi \right]_{t=0}^{2 \pi} \tag{##}
 &= \left[ \rm{log}|Re^{it} + r| \right]_{t=0}^{2 \pi} \tag{##}
 &= \left[ \rm{Log}|Re^{it} + r| + i \phi \right]_{t=0}^{2 \pi} \tag{##}
 </tex>
 
 ここで、実部は $R$ と $r$ の値に関わらず、
 
 <tex>
 \left[ \rm{Log}|Re^{it} + r| \right]_{t=0}^{2 \pi} = 0 \tag{##}
 </tex>
 
 です。 $\rm{Log}$ は引数に実数を取り普通の実関数の $\log$ と同じ値を返します。
 これを「対数の主値」と言います。一方、虚部は、
 
 <tex>
 \phi &= \arg(z) \\
 &= \tan^{-1} \left( \dfrac{R \sin t}{R \cos t + r} \right)
 \tag{##}
 </tex>
 
 となります。
 
 R<rの時
 =============
 
 これは、原点から見て $t$ が $0 \to 2\pi$ まで動くとき、 $\phi$ は $0 \to 0$ を動きます。
 積分路が原点を囲わない為、 $\phi$ のリーマン面の分枝を跨がない為です。
 積分路が原点を囲わない為、 $\rm{log}$ のリーマン面の分枝を跨がない為です。
 
 よって、
 
 <tex>
 \int_\Gamma \dfrac{dz}{z} = 0 \tag{##}
 </tex>
 
 となります。
 
 R>rの時
 =============
 
 この時は、注意が必要です。
 なぜならば、 $R \cos t + r$ がゼロになる $t$ が二つあるからです。これに対応する $t$ を $t_1,t_2 \ (t_1 < t_2)$ とします。ここで小さな正の実数 $\varepsilon (>0) $ を用意します。 $t_1,t_2$ を除いて $t: 0 \to t_1 - \varepsilon, t_1 + \varepsilon \to t_2 - \varepsilon, \ t_2 + \varepsilon \to 2 \pi$ とすればよいようです。この時、 $\phi: 0 \to \dfrac{\pi}{2}, \ -\dfrac{\pi}{2} \to \dfrac{\pi}{2},- \dfrac{\pi}{2} \to 0$ と動きますから、その後で $\varepsilon \to 0$ とすればよく、 
 
 <tex>
 &\left[ i \phi \right]_{t=0}^{t_1 - \varepsilon} + \left[ i \phi \right]_{t=t_1 + \varepsilon}^{t_2 - \varepsilon} + \left[ i \phi \right]_{t=t_2 + \varepsilon}^{2 \pi} \\
 &= i(\dfrac{\pi}{2}-0)+i(\dfrac{\pi}{2}-(-\dfrac{\pi}{2}))+i(0-(-\dfrac{\pi}{2})) \\
 &\to 2 \pi i \tag{##}
 </tex>
 
 となります。
 
 R=rの時
 ============
 
 この場合は、
 
 <tex>
 \phi 
 &= \tan^{-1} \left( \dfrac{\sin t}{\cos t + 1} \right) \\
 &= \tan^{-1} \left( \dfrac{\sin t(1- \cos t)}{(\cos t + 1)(1- \cos t)} \right) \\
 &= \tan^{-1} \left( \dfrac{1- \cos t}{\sin t} \right) \\
 </tex>
 
 となります。ここで $t:0 \to \pi - \varepsilon,\pi + \varepsilon \to 2 \pi$ の時、 $\phi: 0 \to \dfrac{\pi}{2}, \ -\dfrac{\pi}{2} \to 0$ となるので、
 
 <tex>
 &\left[ i \phi \right]_{t=0}^{\pi - \varepsilon} + \left[ i \phi \right]_{t=\pi + \varepsilon}^{2 \pi} \\
 &= i(\dfrac{\pi}{2}-0)+i(0-(-\dfrac{\pi}{2})) \\
 &\to \pi i \tag{##}
 </tex>
 
 となります。
 
 まとめ
 ==================
 
   $\Gamma: z = R e^{it} + r \ (t:0 \to 2 \pi)$ の時、
 
 <tex>
 \int_{\Gamma} \dfrac{dz}{z} &= 
 \begin{cases}
 0 \ (R<r) \\
 \pi i \ (R=r) \\
 2 \pi i \ (R>r) \\
 \end{cases}
 </tex>
 
 となります。
 
 今日はここまで、お疲れさまでした。
 
 @@author:クロメル@@
 @@accept:2020-07-30@@
 @@category:複素解析@@
 @@id:exOfComplexIntegral@@
トップ   新規 一覧 単語検索 最終更新   ヘルプ   最終更新のRSS
Modified by 物理のかぎプロジェクト PukiWiki 1.4.6 Copyright © 2001-2005 PukiWiki Developers Team. License is GPL.
Based on "PukiWiki" 1.3 by yu-ji Powered by PHP 5.3.29 HTML convert time to 0.004 sec.