物理のかぎしっぽ 記事ソース/れいてふ・てんぷれーと のバックアップ差分(No.18)

#rst2hooktail_source
 
 =================================================================
 LaTeX初級テンプレート 
 =================================================================
 
 by LaTeX友の会・事務局 since 2006-08-06 
 
 
 .. csv-table:: あああ
 .. csv-table:: 数式のテンプレート
 
   :header: "表示項目", "原稿表示", "TeX表示" 
 
   "分数 式番号","y=a/x=\\frac{a}{x} \\tag{88}"," $y=a/x=\frac{a}{x} \tag{88} $ "
   "上付添え字","x^2+y^2=r^2"," $x^2+y^2=r^{2}$ "
   "下付添え字 ","_{\\it n}\\mathrm{C}_{\\it r} = \\frac{n!}{(n-r)!r!},"," $_{\it n}\mathrm{C}_{\it r} = \frac{n!}{(n-r)!r!},$ "
   "1次微分","\\dot x^{\\prime} = dx/dt
  =\\frac{d x(t)}{d t}
  =\\frac{d}{d t}\\left(x(t)\\right),"," $ \dot x = x^{\prime} = d x/d t=\frac{d x(t)}{d t}=\frac{d}{d t}\left(x(t)\right), $ "
   "2次微分","\\ddot x^{\\prime \\prime} = d^{2}x/dt^{2}
  =\\frac{d^{2} x(t)}{d t^{2}}
  =\\frac{d}{d t^{2}}\\left(x(t)\\right),"," $ \ddot x = x^{\prime} = d^{2} x/d t^{2}=\frac{d^{2} x(t)}{d t^{2}}=\frac{d^{2}}{d t^{2}}\left(x(t)\right), $ "
   "積分 ","\\int f(x)dx, \\ g(x)=\\int^{x} f(x')dx', \\  \\int_{\\alpha}^{\\beta} f(x)dx."," $ \int f(x)dx, \  g(x)=\int^{x} f(x')dx', \  \int_{\alpha}^{\beta} f(x)dx. $ "
   "面積分,線積分 \\rm≡\\mathrm","\\int\\mspace{-11mu}\\int_{S} f(x,y)\\mspace{2mu}{\\rm d}x \\mspace{2mu}\\rm d}y, \\quad \\oint_{C} f(z){\\rm d}z."," $ \int\mspace{-11mu}\int_{S} f(x,y)  \mspace{2mu}{\rm d} x \mspace{2mu}{\rm d}y, \quad \oint_{C} f(z){\rm d}z. $ "
   "偏微分 ","\\frac{\\partial f(x,y)}{\\partial x} =\\partial_{x}f(x,y)=f_{x}(x,y),"," $ \frac{\partial f(x,y)}{\partial x} =\partial_{x}f(x,y)=f_{x}(x,y), $ "
   "2点間のヴェクタ(上の長い矢) ","\\cos\\left(\\angle \\mathrm{AOB}\\right)= \\frac{\\overrightarrow{\\mathrm{OA}}\\cdot \\overrightarrow{\\mathrm{OB}}}{| \\overrightarrow{\\mathrm{OA}}| \\cdot|\\overrightarrow{\\mathrm{OB}}|}. "," $ \cos\left(\angle \mathrm{AOB}\right)=\frac{\overrightarrow{\mathrm{OA}}\cdot\overrightarrow{\mathrm{OB}}}{|\overrightarrow{\mathrm{OA}}|\cdot|\overrightarrow{\mathrm{OB}}|}.$ "
   "ヴェクタ(上→,太斜体)  \\bm≡\boldmath","\\vec A &= A_x\\vec e_x +A_y\\vec e_y +A_z\\vec e_z, \\\\ \\bm{A} &=A_x\\bm{i}  +A_{y}\\mspace{3mu}\\bm{j} +A_z\\bm{k},","$ \vec A &= A_x\vec e_x +A_y\vec e_y+A_z\vec e_z, \\ \bm{A} &=A_x\bm{i}+A_{y}\mspace{3mu}\bm{j}+A_z\bm{k}.$"
   "ヴェクタ内積 dot-product","\\vec A\\cdot\\vec B \\equiv A_xB_x +A_yB_y +A_zB_z.","$\vec A\cdot\vec B &\equiv A_xB_x +A_yB_y +A_zB_z. \\ &\text{(inner product or dot product)} $"
   "ヴェクタ外積 cross-product","\\vec A \\times \\vec B &\\equiv \\begin{vmatrix}\\vec e_{x} & \\vec e_{y} & \\vec e_{z} \\\\  A_x & A_y &  A_z \\\ B_x & B_y & B_z \\end{vmatrix}.","$\vec A \times \vec B &\equiv \begin{vmatrix}\vec e_{x} & \vec e_{y} & \vec e_{z} \\  A_x & A_y &  A_z \\ B_x & B_y & B_z \end{vmatrix}. \\   &\text{(outer product or cross product)} $"
   "nabla演算子 ","\\overrightarrow{\\bigtriangledown} \\equiv \\frac{\\partial}{\\partial x}\\vec e_{x} +\\frac{\\partial}{\\partial y}\\vec e_{y} +\\frac{\\partial }{\\partial z}\\vec e_{z}, \\quad \\nabla \\equiv \\frac{\\partial}{\\partial x}\\bm{e}_{x} +\\frac{\partial}{\\partial y}\\bm{e}_{y} +\\frac{\\partial }{\\partial z}\\bm{e}_{z}. ","$ \overrightarrow{\bigtriangledown} &\equiv \frac{\partial}{\partial x}\vec e_{x} +\frac{\partial}{\partial y}\vec e_{y} +\frac{\partial }{\partial z}\vec e_{z}, \\ \nabla &\equiv \frac{\partial}{\partial x}\bm{e}_{x} +\frac{\partial}{\partial y}\bm{e}_{y} +\frac{\partial }{\partial z}\bm{e}_{z}. $"
   "gradient:勾配","\\mathrm{grad}\\ f(\vec r)=\\overrightarrow{\\bigtriangledown} f(\\vec r) =\\frac{\\partial f(\\vec r)}{\\partial x}\\vec e_{x} +\\frac{\\partial f(\\vec r)}{\\partial y}\\vec e_{y} +\\frac{\partial f(\\vec r)}{\\partial z}\\vec e_{z},","$ \mathrm{grad}\ f(\vec r)=\overrightarrow{\bigtriangledown} f(\vec r) =\frac{\partial f(\vec r)}{\partial x}\vec e_{x} +\frac{\partial f(\vec r)}{\partial y}\vec e_{y} +\frac{\partial f(\vec r)}{\partial z}\vec e_{z}, $"
   "divergence:発散","\\mathrm{div}\\ \\vec E(\\vec r,t)= \\overrightarrow{\\bigtriangledown}  \\cdot \\vec E(\\vec r,t) =\\frac{\\partial E_{x}(\\vec r,t)}{\\partial x} +\\frac{\\partial E_{y}(\\vec r,t)}{\\partial y} +\\frac{\\partial E_{z}(\\vec r,t)}{\\partial z},","$\mathrm{div}\ \vec E(\vec r,t)= \overrightarrow{\bigtriangledown}  \cdot \vec E(\vec r,t) =\frac{\partial E_{x}(\vec r,t)}{\partial x} +\frac{\partial E_{y}(\vec r,t)}{\partial y} +\frac{\partial E_{z}(\vec r,t)}{\partial z}, $ "
   "rotation:回転","\\mathrm{rot}\\  \\vec H(\\vec r,t)= \\overrightarrow{\bigtriangledown} \\times \\vec H(\\vec r,t) =\\begin{vmatrix}\\vec e_{x} & \\vec e_{y} &  \\vec e_{z}\\\  \\dfrac{\\partial}{\\partial x} & \\dfrac{\\partial}{\\partial y} &  \\dfrac{\partial}{\\partial z} \\\  H_{x}(\\vec r,t) & H_{y}(\\vec r,t) & H_{z}(\\vec r,t) \\end{vmatrix}.","$\mathrm{rot}\  \vec H(\vec r,t)= \overrightarrow{\bigtriangledown}  \times \vec H(\vec r,t) =\begin{vmatrix}\vec e_{x} & \vec e_{y} &  \vec e_{z}\\  \dfrac{\partial}{\partial x} & \dfrac{\partial}{\partial y} &  \dfrac{\partial}{\partial z} \\  H_{x}(\vec r,t) & H_{y}(\vec r,t) & H_{z}(\vec r,t) \end{vmatrix}.$"
   "Laplacian(ラプラシアン:ラプラスの演算子)","\\bigtriangleup  &\\equiv \\left( \\frac{\\partial^2}{\\partial x^2} +\\frac{\\partial^2}{\\partial y^2} +\\frac{\\partial^2}{\\partial z^2}\\right) \\\\ &= \\overrightarrow{\\bigtriangledown}^2 \\\\ &= \\mathrm{div}\\cdot\\mathrm{grad}.","$\bigtriangleup  &\equiv \left( \frac{\partial^2}{\partial x^2} +\frac{\partial^2}{\partial y^2} +\frac{\partial^2}{\partial z^2}\right)\\ &= \overrightarrow{\bigtriangledown}^{2}  \\ &= \mathrm{div}\cdot\mathrm{grad}.$"
   "ラプラスの方程式 <br>ポアッソンの方程式","\\bigtriangleup \\Psi(\vec r) &=0 && \\leftarrow \text{Laplace eq.} & \\Psi(\vec r): \quad \\text{harmonic function} \\\\ \bigtriangleup \\Phi(\vec r) & = q(\vec r) && \leftarrow \\text{Poisson's equation}","$\bigtriangleup \Psi(\vec r) &=0 && \leftarrow \text{Laplace eq.} \quad \Psi(\vec r): \text{harmonic function} \\ \bigtriangleup \Phi(\vec r) & = q(\vec r) && \leftarrow \text{Poisson's equation}$"
   "複素数 成分により表示","z=x+\\mathrm{i}y =r\\mathrm{e}^{+\\mathrm{i}\\theta}   =r\\left(\\cos(\\theta)+\\mathrm{i}\\sin(\\theta)\\right),  \\\\ \\bar z =x-\\mathrm{i}y=r\\mathrm{e}^{-\\mathrm{i}\\theta}   =r\\left(\\cos(\\theta)-\\mathrm{i}\\sin(\\theta)\\right).","$z=x+\mathrm{i}y=r\mathrm{e}^{+\mathrm{i}\theta} =r\left(\cos(\theta)+\mathrm{i}\sin(\theta)\right), \\ \bar z=x-\mathrm{i}y=r\mathrm{e}^{-\mathrm{i}\theta} =  r\left(\cos(\theta)-\mathrm{i}\sin(\theta)\right),$"
   "オイラの公式","\\left\\{ \\begin{array}{l c} \\mathrm{e}^{\\mathrm{i}\\theta} & =\\cos(\\theta)+\\mathrm{i}\\sin(\\theta), \\\\ \\mathrm{e}^{-\\mathrm{i}\\theta} & =\cos(\\theta)-\\mathrm{i}\\sin(\\theta).\\end{array} \\right.","$\left\{ \begin{array}{l c} \mathrm{e}^{\mathrm{i}\theta} & =\cos(\theta)+\mathrm{i}\sin(\theta), \\ \mathrm{e}^{-\mathrm{i}\theta} & =\cos(\theta)-\mathrm{i}\sin(\theta).\end{array} \right.$"
   "オイラの逆公式","\\left\\{ \\begin{array}{l c}  \\cos(\theta) &=\\dfrac{\\mathrm{e}^{\\mathrm{i}\\theta} +\\mathrm{e}^{-\\mathrm{i}\\theta}}{2},\\\\  \\sin(\theta) &=\\dfrac{\\mathrm{e}^{\\mathrm{i}\\theta} -\\mathrm{e}^{-\\mathrm{i}\\theta}}{2\\mathrm{i}}, \\end{array} \\right.","$\left\{ \begin{array}{l c}  \cos(\theta) &=\dfrac{\mathrm{e}^{\mathrm{i}\theta} +\mathrm{e}^{-\mathrm{i}\theta}}{2},\\  \sin(\theta) &=\dfrac{\mathrm{e}^{\mathrm{i}\theta} -\mathrm{e}^{-\mathrm{i}\theta}}{2\mathrm{i}}, \end{array} \right.$"
   "指数関数と双曲線関数","\\left\\{ \\begin{array}{l c} \\mathrm{e}^{x} &=\\cosh(x)+\\sinh(x), \\\\ \\mathrm{e}^{-x} &=\\cosh(x)-\\sinh(x), \\end{array} \\right. \\\\ \\left\\{ \\begin{array}{lcc}  \\cosh(x) &=\\dfrac{\\mathrm{e}^{x}+\\mathrm{e}^{-x}}{2}, & \\\\ \\sinh(x) &= \\dfrac{\\mathrm{e}^{x}-\\mathrm{e}^{-x}}{2}, & \\\\  \\tanh(x) &= \\dfrac{\\sinh(x)}{\\cosh(x)}  &= \dfrac{\\mathrm{e}^{x}-\\mathrm{e}^{-x}} {\\mathrm{e}^{x}+\\mathrm{e}^{-x}}. \\end{array} \\right.","$\left\{ \begin{array}{l c} \mathrm{e}^{x} &=\cosh(x)+\sinh(x), \\ \mathrm{e}^{-x} &=\cosh(x)-\sinh(x), \end{array} \right. \\ \left\{ \begin{array}{lcc}  \cosh(x) &=\dfrac{\mathrm{e}^{x}+\mathrm{e}^{-x}}{2}, & \\ \sinh(x) &= \dfrac{\mathrm{e}^{x}-\mathrm{e}^{-x}}{2}, & \\  \tanh(x) &= \dfrac{\sinh(x)}{\cosh(x)}  &= \dfrac{\mathrm{e}^{x}-\mathrm{e}^{-x}} {\mathrm{e}^{x}+\mathrm{e}^{-x}}. \end{array} \right.$"
 
 
 ===============
 
 
 .. csv-table::  Greek letters
 .. csv-table::  Greek lowercase letters
   :header: "Type", "See", "見出し3", "見出し1", "見出し2", "見出し3", "見出し1", "見出し2"
 
 
 
   "\\alpha", "$\alpha$", "\\eta", "$\eta$", "\\nu", "$\nu$", "\\tau", "$\tau$"
   "\\beta", "$\alpha$", "\\theta", "$\theta$", "\\xi", "$\xi$", "\\upsilon", "$\upsilon$"
   "\\beta", "$\beta$", "\\theta", "$\theta$", "\\xi", "$\xi$", "\\upsilon", "$\upsilon$"
   "\\gamma", "$\gamma$", "\\iota", "$\iota$", "omega", "", "\\phi", "$\phi$"
   "\\delta", "$\delta$", "\\kappa", "$\kappa$", "\\pi", "$\pi$", "\\chi", "$\chi$"
   "\", "$$", "\", "$$", "\", "$$", "\", "$$"
   "\", "$$", "\", "$$", "\", "$$", "\", "$$"
   "\", "$$", "\", "$$", "\", "$$", "\", "$$" 
   "\", "$$", "\", "$$", "\", "$$", "\", "$$"
   "\", "$$", "\", "$$", "\", "$$", "\", "$$"
   "\", "$$", "\", "$$", "\", "$$", "\", "$$"
   "\", "$$", "\", "$$", "\", "$$", "\", "$$"
   "\", "$$", "\", "$$", "\", "$$", "\", "$$" 
 
 
 
 
 
 ■14■ 良く使うギリシャ文字
 --------------------------- ◇原稿の表示◇ ---------------------------+
 <pre>  \alpha     \eta      \nu      \tau
   \beta      \theta     \xi      \upsilon
   \gamma     \iota              \phi
   \delta     \kappa     \pi      \chi
   \epsilon    \lambda     \rho      \psi
   \zeta      \mu       \sigma     \omega
 
   \Gamma     \Theta     \Xi      \Upsilon
   \Delta     \Lambda     \Pi      \Phi
                  \Sigma     \Psi
                          \Omega 
 
   \varGamma   \varTheta   \varXi    \varUpsilon
   \varDelta   \varLambda   \varPi    \varPhi
                  \varSigma   \varPsi
                          \varOmega 
 </pre>--------------------------- ◇TeXの表示◇ ----------------------------+
 <tex>
 \begin{array}{cc|cc|cc|cc|}
 alpha &\alpha &eta &\eta &nu &\nu &tau &\tau \\
 beta &\beta &theta &\theta &xi &\xi &upsilon &\upsilon \\
 gamma &\gamma &iota &\iota &omicron &  &phi &\phi \\
 delta &\delta &kappa &\kappa &pi &\pi  &chi &\chi \\
 epsilon &\epsilon &lambda &\lambda &rho &\rho  &psi &\psi \\
 zeta &\zeta &mu &\mu &sigma &\sigma &omega &\omega \\
 \cline{1-8}
 \text{Gamma} &\Gamma &\text{Theta} &\Theta &\text{Xi} &\Xi &\text{Upsilon} &\Upsilon \\
 \text{Delta} &\Delta &\text{Lambda} &\Lambda &\text{Pi} &\Pi &\text{Phi} &\Phi\\
 \cline{1-4}
  & & & &\text{Sigma} &\Sigma &\text{Psi} &\Psi \\
 \cline{5-6}
  & & & & & &\text{Omega} &\Omega \\
 \cline{1-8}
 varGamma &\varGamma &varTheta &\varTheta &varXi &\varXi &varUpsilon &\varUpsilon \\
 varDelta &\varDelta &varLambda &\varLambda &varPi &\varPi &varPhi &\varPhi\\
 \cline{1-4}
  & & & &varSigma &\varSigma &varPsi &\varPsi \\
 \cline{5-6}
  & & & & & &varOmega &\varOmega \\
 \cline{1-8}
 \end{array}
 </tex>
 --------------------------- -------------- ---------------------------+
 
 @@author:mNeji@@
 @@accept: 2006-08-28@@
 @@category: script@@
 @@id: latexTemplate@@
トップ   新規 一覧 単語検索 最終更新   ヘルプ   最終更新のRSS
Modified by 物理のかぎプロジェクト PukiWiki 1.4.6 Copyright © 2001-2005 PukiWiki Developers Team. License is GPL.
Based on "PukiWiki" 1.3 by yu-ji Powered by PHP 5.3.29 HTML convert time to 0.030 sec.