メニュー現在 3 名がオンラインです。 最新の25件2025-10-31
2025-10-22
2025-07-20
2025-07-19
2024-05-24
2024-05-23
2023-12-12
2023-11-06
2022-09-14
2022-07-01
2022-06-12
2021-12-03
2021-10-07
2021-08-12
2021-07-26
2021-06-30
2021-06-06
2021-05-02
2021-04-17
2021-03-20
2021-03-19
|
記事ソース/∫e^(-ikx)/(x-c)dxの計算†これはrst2hooktailの記事ソース保存・変換用です(詳細). コンバート公開・更新メニュー ▼▲記事ソースの内容============================================================
∫e^(-ikx)/(x-c)dxの計算
============================================================
この記事では、 $\int_{-\infty}^\infty f(z) dz \equiv \int_{-\infty}^\infty \dfrac{e^{-ikx}}{x-\alpha+i\beta}dx$ ただし、 $(\beta>0)$ の値を求めます。
それには、複素積分の知識を用います。
<tex>
\left( \int_{C_R} + \int_{\infty}^{-\infty} \right) \ f(z) \ dz = 2 \pi i \mathrm{Res}_{z= \alpha - i \beta }f(z) \tag{##}
</tex>
ですね。Jordanの補助定理というものを用いるには、図の様に積分のループは下半面にとります。
.. image:: chromel-fukusoSekibunExample-01-t.png
すると、 $\int_{C_R} f(z) dz \to 0$ となり簡単になります。
よって、 $\mathrm{Res}_{z= \alpha - i \beta }f(z)$ を計算すればこの問題は解決します。
それは、
<tex>
\mathrm{Res}_{z= \alpha - i \beta }f(z) = \lim_{z \to \alpha - i \beta}(z -\alpha + i \beta)\dfrac{e^{-ikz}}{z- \alpha+ i \beta} = e^{-ik \alpha - k \beta } \tag{##}
</tex>
となります。
よって、
<tex>
\int_{-\infty}^\infty \dfrac{e^{-ikx}}{x-\alpha+i\beta}dx = -2 \pi i e^{-ik \alpha - k \beta}
</tex>
が求まりました。
それでは今日はこの辺で、お疲れ様でした。
@@author:クロメル@@
@@accept:2011-06-08@@
@@category:物理数学@@
@@id:fukusoSekibunExample@@
|