============================================================ ÎϤÎÅù²ÁÊÑ´¹ ============================================================ ¼ÁÅÀ¤ÎÎϳؤǤϤ¹¤Ù¤Æ¤Î±¿Æ°¤Ï¥Ë¥å¡¼¥È¥ó¤Î±¿Æ°¤Î£³Ë¡Â§¤Ç·×»»¤Ç¤­¤ë¤ÈÀâÌÀ¤µ¤ì¤Æ¤¤¤Þ¤¹¤¬¡¤ ¹äÂΤÎÎϳؤǤϤ¢¤ëÅÀ¤Î²ó¤ê¤Î¥â¡¼¥á¥ó¥È¤Î·×»»¤¬É¬Íפˤʤê¤Þ¤¹¡¥ ¤½¤Î¤¿¤á¤Ë¤Ï¡¤¤Þ¤º¥â¡¼¥á¥ó¥È¤Î·×»»¤Ç¤ÏÎϤ¬Â«Çû¥Ù¥¯¥È¥ë¤Ç¤¢¤ë¡ÊÂ礭¤µ¤È¸þ¤­¤¬Æ±¤¸¤Ç¤â ºîÍÑÅÀ¤Ë¤è¤Ã¤ÆƯ¤­¤¬°Û¤Ê¤ë¡Ë¤³¤È¤òºÆǧ¼±¤·¤Ê¤±¤ì¤Ð¤Ê¤ê¤Þ¤»¤ó¡¥ ¤³¤³¤Ç¤Ï¡¤ºîÍÑÅÀ¤òÌÀ¼¨¤·¤¿Â«Çû¥Ù¥¯¥È¥ë¤Îɽ¸½¤È·×»»Îã¤ò¼¨¤·¤Þ¤¹¡¥ Åù²Á¤ÊÎϤȤϡ© ============== ´Êñ¤ÊÎã¤È¤·¤Æ¡¤¼ÁÎÌ $m_1$, $m_2$ ¤Î¼ÁÅÀ¤ò·Ú¤¤ËÀ¤Ç¤Ä¤Ê¤¤¤À²¼¿Þ¤Î¹äÂΤò¹Í¤¨¤Þ¤¹¡¥ $\bm F_i$, $\bm F_{ik}$ ¤Ï¤½¤ì¤¾¤ì¼ÁÎÌ $m_i$ ¤Î¼ÁÅÀ¤ËƯ¤¯³°ÎÏ¡¤¼ÁÎÌ $m_k$ ¤Î¼ÁÅÀ¤«¤é ¼ÁÎÌ $m_i$ ¤Î¼ÁÅÀ¤ËƯ¤¯ÆâÎϤǤ¹¡¥ .. figure:: pulsar-BoundVector-Fig1.gif £²¼ÁÅÀ¤ò¤Ä¤Ê¤¤¤À¹äÂÎ ¼ÁÎÌ $m_1$, $m_2$ ¤Î¼ÁÅÀ¤Î°ÌÃÖ¥Ù¥¯¥È¥ë¤ò¤½¤ì¤¾¤ì $\bm r_1$, $\bm r_2$ ¤È¤¹¤ë¤È¡¤ÆâÎÏ¤Ï \bm F_{12} + \bm F_{21} = \bm 0 (\bm r_1 - \bm r_2) \times \bm F_{12} = \bm 0 ¤È¤¤¤¦À­¼Á¤ò¤â¤Ã¤Æ¤¤¤ë¤Î¤Ç¡¤±¿Æ°ÊýÄø¼° m_i \frac{\mathrm d^2 \bm r_i}{\mathrm d t^2} = \bm F_i + \sum_{k \neq i}\bm F_{ik} ¤«¤é m_1 \frac{\mathrm d^2 \bm r_1}{\mathrm d t^2} + m_2 \frac{\mathrm d^2 \bm r_2}{\mathrm d t^2} = \bm F_1 + \bm F_2 \bm r_1 \times m_1 \frac{\mathrm d^2 \bm r_1}{\mathrm d t^2} + \bm r_2 \times m_2 \frac{\mathrm d^2 \bm r_2}{\mathrm d t^2} + = \bm r_1 \times \bm F_1 + \bm r_2 \times \bm F_2 ¤È¤¤¤¦ÆâÎϤò´Þ¤Þ¤Ê¤¤¼°¤¬ÆÀ¤é¤ì¡¤¤³¤ÎÈùʬÊýÄø¼°¤ò²ò¤¯¤³¤È¤Ë¤è¤Ã¤Æ $\bm r_1$, $\bm r_2$ ¤òµá¤á¤ë¤³¤È¤¬¤Ç¤­¤Þ¤¹ [*]_ ¡¥¹äÂΤα¿Æ°¤ò¹Í¤¨¤ë¤È¤­¥â¡¼¥á¥ó¥È¤ò·×»»¤¹¤ë¤Î¤Ï¡¤ Á°µ­¤Î $(\bm r_1 - \bm r_2) \times \bm F_{12} = \bm 0$ ¤È¤¤¤¦À©Ìó¤Ë¤è¤ë¤â¤Î¤Ç¤¹¡¥ .. [*] ½Å¿´ $\bm r_{\mathrm G}$ ¤ò $(m_1 + m_2) \bm r_{\mathrm G} = m_1 \bm r_1 + m_2 \bm r_2$ ¤ÇÄêµÁ¤¹¤ë¤È¡¤¼ÁÅÀ¤Î±¿Æ°ÊýÄø¼°¤ÈÎà»÷¤Î $(m_1 + m_2) \frac{\mathrm d^2 \bm r_{\mathrm G}}{\mathrm d t^2} = \bm F_1 + \bm F_2$ ¤¬ÆÀ¤é¤ì¤Þ¤¹¡¥ ¤³¤Î¹äÂΤËƯ¤¯ÎϤ¬¤Ä¤ê¹ç¤Ã¤Æ¤¤¤ë¤È¤¤¤¦¤³¤È¤Ï $\bm F_1 + \bm F_2 = \bm 0$, $\bm r_1 \times \bm F_1 + \bm r_2 \times \bm F_2 = \bm 0$ ¤Ç¤¢¤ë¤³¤È¤ò°ÕÌ£¤·¤Þ¤¹¡¥ ¤³¤Î¤³¤È¤«¤é, $\bm F_1, \cdots , m, \cdots , F_m, -\bm F_{m+1}, \cdots , -\bm F_n$ ¤¬ ¤Ä¤ê¹ç¤Ã¤Æ¤¤¤ë¤È¤­¡¤¤¹¤Ê¤ï¤Á \sum_{i=1}^m \bm F_i = \sum_{i=m+1}^n \bm F_i \sum_{i=1}^m \bm r_i \times \bm F_i = \sum_{i=m+1}^n \bm r_i \times \bm F_i ¤Ç¤¢¤ë¤È¤­, $\bm F_1, \cdots , \bm F_m$ ¤È $\bm F_{m+1}, \cdots , \bm F_n$ ¤Ï Åù²Á¤Ç¤¢¤ë¤ÈÄêµÁ¤·¤Þ¤¹¡¥¤³¤³¤Ç $\bm r_i$ ¤Ï $\bm F_i$ ¤ÎºîÍÑÅÀ¤Î°ÌÃÖ¥Ù¥¯¥È¥ë¤ò ɽ¤·¤Æ¤¤¤Þ¤¹¡¥¤³¤Î¤È¤­¡¤Ç¤°Õ¤Î $\bm r_0$ ¤Ë¤Ä¤¤¤Æ \sum_{i=1}^m (\bm r_i - \bm r_0) \times \bm F_i = \sum_{i=m+1}^n (\bm r_i - \bm r_0) \times \bm F_i ¤È¤Ê¤ë¤³¤È¤ò³Îǧ¤·¤Æ¤¯¤À¤µ¤¤¡¥ «Çû¥Ù¥¯¥È¥ë¤Îɽ¸½ ================== $\bm r_i$ ¤òºîÍÑÅÀ¤È¤¹¤ëÎÏ $\bm F_i$ ¤ò $\bm F_i(\bm r_i)$ ¤Èɽ¤·¤Æ¤â¡¤ Ä̾ï¤Ï $\bm F_i(\bm r_i) = \bm F_k(\bm r_k)$ ¤Ï $\bm F_i(\bm r_i)$ ¤È $\bm F_k(\bm r_k)$ ¤ÎÂ礭¤µ¤È¸þ¤­¤¬Åù¤·¤¤¤È²ò¼á¤µ¤ì¤Þ¤¹¡¥¤³¤Î¤¿¤á¡¤ ¿·¤·¤¤µ­¹æ $\bm F_i[\bm r_i]$ ¤òÍѤ¤¤Æ \sum_{i=1}^m \bm F_i[\bm r_i] = \sum_{i=m+1}^n \bm F_i[\bm r_i] ¤Î°ÕÌ£¤ò \sum_{i=1}^m \bm F_i = \sum_{i=m+1}^n \bm F_i \sum_{i=1}^m \bm r_i \times \bm F_i = \sum_{i=m+1}^n \bm r_i \times \bm F_i ¤ÇÄêµÁ¤·¤Þ¤¹¡¥¤³¤ÎÄêµÁ¤«¤é¤¿¤À¤Á¤Ë $(\bm r_1 - \bm r_2) \times \bm F_0$ ¤Ê¤é¤Ð $\bm F_0[\bm r_1] = \bm F_0[\bm r_2]$ ¡ÊÎϤϤ½¤ÎºîÍÑÀþ¾å¤ò°ÜÆ°¤·¤Æ¤âƯ¤­¤ÏÊѤï¤é¤Ê¤¤¡Ë ¤È¤¤¤¦À­¼Á¤¬Æ³¤«¤ì¤Þ¤¹ [*]_ ¡¥ .. [*] $(\bm r - \bm r_1) \times \bm F_0$ ¤È¤Ê¤ëÅÀ $\bm r$ ¤Î½¸¹ç¤òÎÏ $\bm F_0[\bm r_1]$ ¤ÎºîÍÑÀþ¤È¤¤¤¤¤Þ¤¹¡¥ Æó¤Ä¤ÎÎϤιçÎÏ ============== Í¿¤¨¤é¤ì¤¿ $\bm F_1[\bm r_1]$, $\bm F_2[\bm r_2]$ ¤ËÂФ·¤Æ \bm F_1[\bm r_1] + \bm F_2[\bm r_2] = \bm F_3[\bm r_3] ¤È¤Ê¤ë $\bm F_3[\bm r_3]$ ¤¬Â¸ºß¤¹¤ë¤È¤­¡¤ $\bm F_3[\bm r_3]$ ¤ò $\bm F_1[\bm r_1]$, $\bm F_2[\bm r_2]$ ¤Î¹çÎϤȤ¤¤¤¤Þ¤¹¡¥ $\bm F_1[\bm r_1]$, $\bm F_2[\bm r_2]$ ¤¬ Ʊ°ìÊ¿Ì̾å¤Ë¤¢¤ì¤Ð¡¤ $\bm F_1 + \bm F_2 = \bm 0$, $\bm r_1 \neq \bm r_2$ ¤Î¾ì¹ç¤ò½ü¤¤¤Æ¡¤¹çÎϤ¬Â¸ºß¤·¤Þ¤¹¡¥ Ê¿¹Ô¤Ç¤Ê¤¤£²ÎÏ -------------- $\bm F_1[\bm r_1]$, $\bm F_2[\bm r_2]$ ¤¬Ê¿¹Ô¤Ç¤Ê¤¤¤È¤­¤Ï¡¤¤³¤ì¤é¤Î¥Ù¥¯¥È¥ë¤Ï £±¼¡ÆÈΩ¤Ç¤¹¤«¤é $\bm r_1 - \bm r_2 = a \bm F_1 - b \bm F_2$ ¤È¤Ê¤ë $a$, $b$ ¤¬ ¸ºß¤·¡¤ \bm F_3 = \bm F_1 + \bm F_2 \bm r_3 = \bm r_1 - a \bm F_1 = \bm r_2 - b \bm F_2 ¤Èɽ¤»¤Þ¤¹¡Ê $\bm r_3$ ¤Ï£²ÎϤκîÍÑÀþ¤Î¸òÅÀ¡Ë¡¥ Î㤨¤Ð $\bm F_1[\bm r_1] = (F, 0)[(2r, 0)]$, $\bm F_2[\bm r_2] = (0, F)[(0, 2r)]$ ¤Î¤È¤­¡¤ \left( \begin{array}{cc} 2r & -2r \\ \end{array} \right) = \left( \begin{array}{cc} a & -b \\ \end{array} \right) \left(\begin{array}{cc} F & 0 \\ 0 & F \\ \end{array} \right) ¤Ç¤¹¤«¤é¡¤ $\bm F_3[\bm r_3] = (F, F)[(0, 0)]$ ¤È¤Ê¤ê¤Þ¤¹¡¥¤¿¤À¤·¡¤ $(0, 0)$ ¤Ï ¹äÂξå¤Ë¤Ê¤¤¤Î¤Ç¡¤ $\bm F_3[\bm r_3]$ ¤ÎºîÍÑÀþ¾å¤Ë¤¢¤ë¹äÂξå¤ÎÅÀ $\bm r_4=(r, r)$ ¤òµá¤á¡¤ $\bm F_3[\bm r_3]$ ¤ÈÅù²Á¤Ê $\bm F_3[\bm r_4] = (F, F)[(r, r)]$ ¤ò ¹çÎϤȤ¹¤ëÊý¤¬¼«Á³¤Ç¤·¤ç¤¦ [*]_ ¡¥ .. figure:: pulsar-BoundVector-Fig2.gif $(F, 0)[(2r, 0)] + (0, F)[(0, 2r)]$ .. [*] Ǥ°Õ¤Î $r_a$, $r_b$, $r_c$ ¤Ë¤Ä¤¤¤Æ $(F, F)[(0, 0)] = (F, 0)[(r_a, r_b)] + (0, F)[(r_c, r_a)]$ ¤¬À®Î©¤·¤Þ¤¹¡¥ Ê¿¹Ô¤Ê£²ÎÏ ---------- $\bm F_2 = c \bm F_1 \hspace{1zw} (c \neq -1)$ ¤Ç¤¢¤ì¤Ð¡¤ \bm r_1 \times \bm F_1 + \bm r_2 \times \bm F_2 = (\bm r_1 + c \bm r_2) \times \bm F_1 ¤Ç¤¹¤«¤é¡¤ \bm F_3 = (1 + c)\bm F_1 \bm r_3 = \frac{\bm r_1 + c \bm r_2}{1 + c} ¤Ç¤¹¡¥ Î㤨¤Ð $\bm F_1[\bm r_1] = (0, -F)[(0, 0)]$, $\bm F_2[\bm r_2] = (0, -2F)[(3r, 0)]$ ¤Î¤È¤­¡¤ \bm r_3 = \frac{(0, 0)+2(3r, 0)}{1+2} = (2r, 0) ¤Ç¡¤ $\bm F_3[\bm r_3] = (0, -3F)[(2r, 0)]$ ¤È¤Ê¤ê¤Þ¤¹¡¥ .. figure:: pulsar-BoundVector-Fig3.gif $(0, -F)[(0, 0)] + (0, -2F)[(3r, 0)]$ ¶öÎÏ ==== $\bm F_1 + \bm F_2 = \bm 0$, $\bm r_1 \neq \bm r_2$ ¤Î¤È¤­¡¤ $\bm F_1[\bm r_1]$, $\bm F_2[\bm r_2]$ ¤Î¹çÎϤϸºß¤·¤Þ¤»¤ó¡¥¤³¤Î¤è¤¦¤ÊÎϤÎÁÈ $\bm F_1[\bm r_1]$, $\bm F_2[\bm r_2]$ ¤ò¶öÎϤȤ¤¤¤¡¤°Ê²¼¤Ç¤Ï $\bm F_0[\bm r_1] - \bm F_0[\bm r_2]$ ¤ò $\bm F_0[\bm r_1, \bm r_2]$ ¤Èάµ­¤·¤Þ¤¹¡¥ ¶öÎϤΥ⡼¥á¥ó¥È¤¬¼«Í³¥Ù¥¯¥È¥ë¤Ç¤¢¤ë¤³¤È¡¤¤¹¤Ê¤ï¤ÁǤ°Õ¤Î $\bm r_0$ ¤Ë¤Ä¤¤¤Æ \bm r_1 \times \bm F_0 + \bm r_2 \times (-\bm F_0) = (\bm r_1 - \bm r_0) \times \bm F_0 + (\bm r_1 - \bm r_0) \times (-\bm F_0) ¤¬À®Î©¤¹¤ë¤³¤È¤ä¡¤¶öÎÏ $\bm F_0[\bm r_1, \bm r_2]$ ¤È ¶öÎÏ $c^{-1} \bm F_0[c(\bm r_1 - \bm r_2), \bm 0]$ ¤Î¥â¡¼¥á¥ó¥È¤¬Åù¤·¤¤¤³¤ÈÅù¤¬ Íưפ˳Τ«¤á¤é¤ì¤Þ¤¹¡¥ £³¼¡¸µ¤ÎÎϤÎÅù²ÁÊÑ´¹ ==================== $\bm F_1[\bm r_1]$, $\bm F_2[\bm r_2]$ ¤¬Æ±°ìÊ¿Ì̾å¤Ë¤Ê¤±¤ì¤Ð ¤³¤ì¤é¤Î¹çÎϤϸºß¤·¤Þ¤»¤ó¤¬¡¤Ç¤°Õ¤Î $\bm r_0$ ¤Ë¤Ä¤¤¤Æ \bm F_1[\bm r_1] + \bm F_2[\bm r_2] = \bm F_3[\bm r_0] + \bm F_4[\bm r_4, \bm r_0] ¤¬À®Î©¤¹¤ë¤è¤¦¤Ë $\bm F_3$, $\bm F_4$, $\bm r_4$ ¤òÁª¤Ö¤³¤È¤¬¤Ç¤­¤Þ¤¹¡¥ .. figure:: pulsar-BoundVector-Fig4.gif $\bm F_i[\bm r_i]$ ¤ÎÅù²ÁÊÑ´¹ Î㤨¤Ð¡¤ $\bm F_i[\bm r_i]$ ¤ò \bm F_i[\bm r_i] = \bm F_i[\bm r_0] + \bm F_i[\bm r_i] - \bm F_i[\bm r_0] = \bm F_i[\bm r_0] + \bm F_i[\bm r_i, \bm r_0] ¤ÈÊÑ·Á¤·¤Æ²Ã»»¤·¤¿¼° \sum_{i=1}^2 \bm F_i[\bm r_i] = \left( \sum_{i=1}^2 \bm F_i \right)[\bm r_0] + \sum_{i=1}^2 \bm F_i[\bm r_i, \bm r_0] ¤Î±¦ÊÕÂ裲¹à¤Ï¶öÎϤÎϤǤ¹¤«¤é¡¤¼«Í³¥Ù¥¯¥È¥ë¤Ç¤¢¤ë¤³¤ì¤é¤Î¥â¡¼¥á¥ó¥È¤ÎÏ \bm N = \sum_{i=1}^2 (\bm r_i - \bm r_0) \times \bm F_i ¤ÏÍưפ˷׻»¤Ç¤­¡¤ $(\bm r_4 - \bm r_0) \times \bm F_4 = \bm N$ ¤òËþ­¤¹¤ë $\bm F_4$, $\bm r_4$ ¤¬µá¤á¤é¤ì¤Þ¤¹ [*]_ ¡¥ .. [*] $\bm N$ ¤¬ $\bm F_3$ ¤ÈÊ¿¹Ô¤Ç¤Ê¤¤¤È¤­¡¤ $\bm F_3$ ¤ÈÊ¿¹Ô¤Ê¶öÎϤÎÀ®Ê¬¤ò $\bm F_3$ ¤Ë²Ã»»¤·¡Ê¹çÎϤ¬Â¸ºß¤·¤Þ¤¹¡Ë¡¤¤³¤ì¤È $\bm F_3$ ¤Èľ¸ò¤¹¤ë¶öÎÏ ¡Ê¥â¡¼¥á¥ó¥È¤Ï $\bm F_3$ ¤ÈÊ¿¹Ô¡Ë¤È¤ÎϤËÊÑ·Á¤Ç¤­¤Þ¤¹¡¥ ¾å¼°¤Ç $\bm r_0$ ¤¬Ç¤°Õ¤ÎÅÀ¤Ç¤è¤«¤Ã¤¿¤³¤È¤ò»×¤¤½Ð¤¹¤È¡¤Â¿¿ô¤Î£³¼¡¸µ¥Ù¥¯¥È¥ë $\bm F_1[\bm r_1], \cdots , \bm F_n[\bm r_n]$ ¤Ë¤Ä¤¤¤Æ¤â \sum_{i=1}^n \bm F_i[\bm r_i] = \bm F_{n+1}[\bm r_0] + \bm F_{n+2}[\bm r_{n+2}, \bm r_0] ¤È¤Ê¤ë $\bm F_{n+1}$, $\bm F_{n+2}$, $\bm r_{n+2}$ ¤¬Â¸ºß¤¹¤ë¤³¤È¤¬Ê¬¤«¤ê¤Þ¤¹¡¥ °ìÍͤÊÌ©Å٤ιäÂΤËƯ¤¯ÎÏ ======================== ½ÅÎÏ ---- $\bm F_0[\bm r_0 - \bm r_1] + \bm F_0[\bm r_0 + \bm r_2] = 2 \bm F_0[\bm r_0]$ ¤Ç¤¹¤«¤é¡¤Ì©ÅÙ¤¬°ìÍͤǡ¤ÅÀ $\bm r_0$ ¤Ë´Ø¤·¤ÆÂоΤʹäÂΤËƯ¤¯½ÅÎϤϡ¤½Å¿´¤ò ºîÍÑÅÀ¤È¤·¡¤Â礭¤µ¤È¸þ¤­¤¬ÎϤÎÁíϤËÅù¤·¤¤ÎϤÈÅù²Á¤Ç¤¢¤ë¤³¤È¤¬Ê¬¤«¤ê¤Þ¤¹¡¥ Î㤨¤Ð¡¤Î¾Ã¼¤¬ $\bm r_1$, $\bm r_2$ ¤Ë¤¢¤ë¼ÁÎÌ $M$ ¤ÎËÀ¤ËƯ¤¯½ÅÎϤϡ¤ËÀ¤ò $2 n$ ¸Ä¤ÎÈù¾®Îΰè¤ËÅùʬ¤·¤ÆÅÀÂоΤʰÌÃ֤ˤ¢¤ëÈù¾®Îΰè¤ÎÂФò¹Í¤¨¤ë¤È¡¤³ÆÂФιçÎϤΠºîÍÑÅÀ¤Ï¤¹¤Ù¤ÆËÀ¤ÎÃæ¿´¤Ë¤Ê¤ê¡¤¤³¤ì¤é¤Î¹çÎϤÎÁíϤ¬ËÀ¤ËƯ¤¯½ÅÎϤÈÅù¤·¤¯¤Ê¤ê¤Þ¤¹¡¥ ¸ÇÄêÅÀ¤«¤é¼õ¤±¤ëÎÏ ------------------ ¹äÂΤ¬¸ÇÄêÅÀ¤Î²ó¤ê¤ò±¿Æ°¤·¤Æ¤¤¤ë¤È¤­¡¤Ä̾ï¤Ï¸ÇÄêÅÀ²ó¤ê¤Î³Ñ±¿Æ°Î̤λþ´ÖÈùʬ¤¬ ¸ÇÄêÅÀ²ó¤ê¤Î³°ÎϤΥ⡼¥á¥ó¥È¤ÎÁíϤËÅù¤·¤¤¤È¤·¤Æ±¿Æ°ÊýÄø¼°¤ò²ò¤­¤Þ¤¹¡¥¤³¤Î¾ì¹ç¡¤ ¸ÇÄêÅÀ¤ËƯ¤¤¤Æ¤¤¤ëÎϤò·×»»¤¹¤ëɬÍפϤ¢¤ê¤Þ¤»¤ó¤¬¡¤¾åµ­¤ÎÀâÌÀ¤È´ØÏ¢ÉÕ¤±¤ë¤¿¤á¤Ë ¸ÇÄêÅÀ $\bm r_0$ ¤ËƯ¤¯ÎϤ¬ $\bm F_0[\bm r_0]$, ¤½¤Î¾¤Î³°ÎϡʽÅÎϤϽſ´¤Ë½¸Ãæ ¤·¤Æ¤¤¤ë¤È¤·¤Æ°·¤¤¤Þ¤¹¡Ë¤¬ $\bm F_i[\bm r_i]$ $(i = 1, \cdots , n)$ ¤Ç¤¢¤ë¾ì¹ç ¤Ë¤Ä¤¤¤Æ¹Í¤¨¤Þ¤·¤ç¤¦¡¥ ¤³¤Î¹äÂΤËƯ¤¯ÎÏ¤Ï \bm F[\bm r] = \left( \sum_{i=0}^n \bm F_i \right) [\bm r] + \sum_{i=0}^n \bm F_i[\bm r_i, \bm r] ¤ÈÅù²Á¤Ç¤¹¤«¤é¡¤ $\bm r = \bm r_0$ ¤È¤ª¤¯¤È $\bm r_0$ ²ó¤ê¤Î³Ñ±¿Æ°Î̤òµá¤á¤ë ÊýÄø¼°¤«¤é $\bm F_0$ ¤¬¾Ã¤¨¤Æ¤·¤Þ¤¤¤Þ¤¹¡¥¤Ä¤Þ¤ê¡¤ $\bm F_0$ ¤òµá¤á¤ëɬÍפ¬¤Ê¤±¤ì¤Ð ±¿Æ°Î̤òµá¤á¤ëÊýÄø¼°¤Ï¹Í¤¨¤Ê¤¯¤Æ¤è¤¤¤Î¤Ç¤¹¡¥ ¿ôÃÍÎã¤Ë¤Ä¤¤¤Æ ============== ¡ÖÆó¤Ä¤ÎÎϤιçÎϡפǤϡ¤¿ôÃÍÎã¤Ë $\bm F_1[\bm r_1] = (0, -F)[(0, 0)]$, $\bm F_2[\bm r_2] = (0, -2F)[(3r, 0)]$ ¤Î¤è¤¦¤Êɽ¸½¤òÍѤ¤¤Þ¤·¤¿¡¥¤³¤ÎÅÀ¤Ë¤Ä¤¤¤Æ Êä­¤·¤Þ¤¹¡¥ Ä̾ʪÍýÎ̤òɽ¤¹Ê¸»ú¤Ïñ°Ì¤ò´Þ¤ó¤Ç¤¤¤Þ¤¹¡¥Î㤨¤Ð¡¤Â®¤µ $v$ ¤Ç»þ´Ö $t$ ¤À¤± °ÜÆ°¤·¤¿¤È¤­¤Î°ÜÆ°µ÷Î¥¤Ï $vt$ ¤Ç¤¢¤ë¤È¤¤¤Ã¤¿¤È¤­¡¤ $v$ ¤ä $t$ ¤Îñ°Ì¤Ï¼«Í³¤ËÁª¤Ù¤Þ¤¹¡¥ $v = 72 \mathrm{km/h}$, $t = 3 \mathrm{s}$ ¤Ê¤é¤Ð $vt = 60 \mathrm{m}$ ¤Ç¤¹¡¥ ¤Ê¤ª¡¤Â®¤µ $v$ ¤Ç $1 \mathrm{s}$ ´Ö°ÜÆ°¤·¤¿¤È¤­¤Î°ÜÆ°µ÷Î¥¤Ï $v$ ¤Ç¤Ï¤Ê¤¯ $(1 \mathrm{s})v$ ¤Ç¤¹ [*]_ ¡¥¾åµ­¤Î $(0, -2F)[(3r, 0)]$ ¤Î¤è¤¦¤Ê¿ôÃÍÎã¤Ï $(0, -2 \mathrm{N})[(3 \mathrm{m}, 0)]$ ¤Î¤è¤¦¤Êɽ¸½¤è¤êʬ¤«¤ê¤ä¤¹¤¤¤È»×¤¤¤Þ¤¹¡¥ .. [*] $0 \mathrm{km/h} = 0 \mathrm{m/s}$ ¤À¤«¤é $v = 0$ ¤Î±¦ÊÕ¤Ëñ°Ì¤ÏÉÔÍפǤ¹¤¬¡¤ ²¹ÅÙ $T = 0^{\circ} \mathrm C$ ¤Îñ°Ì¤Ï¾Êά¤Ç¤­¤Þ¤»¤ó¡¥ ¡Ê¼Ø­¤Ç¤¹¤¬¡¤Ç®ÍÆÎ̤äÈæÇ®¤Ë»È¤ï¤ì¤ë²¹ÅÙº¹¤Î $1^{\circ} \mathrm C$ ¤Ï $274.15 \mathrm K$ ¤Ç¤Ê¤¯ $1 \mathrm K$ ¤Ç¤¹¡¥ $[\mathrm J]$ ¤Ç¤Ê¤¤ $[\mathrm N \cdot \mathrm m]$, ̵¼¡¸µ¤Ç¤Ê¤¤ $[\mathrm m / \mathrm m]$ Åù¡¤ ñ°Ì¤Ë¤Ä¤¤¤Æ¤Ï¶ì¤·Ê¶¤ì¤Î¶èÊ̤¬¤¤¤¯¤Ä¤«¤¢¤ê¤Þ¤¹¡¥¡Ë ¤¢¤È¤¬¤­ ======== ¤³¤³¤Ç½Ò¤Ù¤¿ÆâÍƤϤ¹¤Ù¤Æ»ä¤¬³ØÀ¸¤Î¤È¤­¤Ë³Ø¤ó¤À¶µ²Ê½ñ[1]¡Ê¸Å½ñ¡¤ISBN¤Ê¤·¡Ë¤Ë½ñ¤«¤ì¤Æ ¤¤¤Þ¤¹¡¥´ûÃΤλöÊÁ¤òÄÁ´ñ¤Êµ­¹æ¤ò»È¤Ã¤Æ½ñ¤­´¹¤¨¤¿¤À¤±¤À¤È´¶¤¸¤¿Êý¤¬Â¿¤¤¤È»×¤¤¤Þ¤¹¤¬¡¤ ¥â¥Ç¥ê¥ó¥°¡¤µ­Ë¡¡¤¥×¥í¥°¥é¥ß¥ó¥°Åù¤Ë´Ø¿´¤Î¤¢¤ë¹â¹»À¸¡¦Âç³ØÀ¸½ô·¯¤Î¤¿¤á¤Ë½ê°³Ø²ñ¤Î ¸¦µæ²ñ¤Çȯɽ¤·¤¿ÆâÍƤòÊä­¤·¡¤¿ôÃÍÎã¤âÉÕ¤±²Ã¤¨¤Æ¾Ò²ð¤·¤Þ¤·¤¿¡¥¶µ²Ê½ñ¡¦»²¹Í½ñ¤òĶ¤¨¤Æ ¼«Ê¬¤Ç¤¤¤í¤¤¤í¹©Éפ·¤Æ¤Û¤·¤¤¤È¤¤¤¦¤Î¤¬É®¼Ô¤Î´ê¤¤¤Ç¤¹¡¥ @@reference:¹ñ°æ½¤ÆóϺ¡¤ÀéÅĹáÉÄ, Îϳح¶, ´ÝÁ±, 1958, 80-86@@ @@author:pulsar@@ @@accept:2009-10-25@@ @@category:ÎϳØ@@ @@id:transforce@@