============================================================ 一般化されたエルミート多項式 ============================================================ この記事では、エルミート多項式を一般化します。 色々、遊んでいます。 準備 ============== いきなりですが、次の演算子の変形ができます。 e^{f(x)}\dfrac{d}{dx}e^{-f(x)} = \dfrac{d}{dx} -f^\prime(x) \tag{##} 証明はフーリエ変換を使います。 e^{f(x)}\dfrac{d}{dx}e^{-f(x)} g(x) &= e^{f(x)} \left( \dfrac{d}{dx}e^{-f(x)} \right) g(x) + e^{-f(x)} \left( \dfrac{d}{dx} g(x) \right) \\ &= \left( \dfrac{d}{dx} - f^\prime(x) \right) g(x) \tag{##} で、 $g(x)$ は任意ですから、 e^{f(x)}\dfrac{d}{dx}e^{-f(x)} = \dfrac{d}{dx} -f^\prime(x) \tag{##} が言えました。さらには、 e^{f(x)}\dfrac{d^n}{dx^n}e^{-f(x)} = \left( \dfrac{d}{dx} -f^\prime(x) \right)^n \tag{##} も自明です。 エルミート多項式 ======================= 式 $(4)$ の演算子を $f(x) = x^2$ 、 $g(x) = 1$ とし、調整の為 $(-1)^n$ を掛けると、 H_n(x) = (-1)^n e^{x^2} \dfrac{d^n}{dx^n} e^{-x^2} \tag{##} が得られ、また、 H_n(x) = (-1)^n \left( \dfrac{d}{dx} - 2x \right)^n \tag{##} も出ます。式 $(6)$ は変形して、漸化式、 H_{n+1}(x) &= - \left( \dfrac{d}{dx} - 2x \right) H_n(x) \\ \dfrac{d}{dx}H_n(x) &= 2x H_n(x) - H_{n+1}(x) \tag{##} が得られます。 エルミート多項式の拡張 ======================================= と言うことはです。 $f(x)$ と $g(x)$ に好きな関数を入れてやれば、 エルミート多項式の拡張が容易に得られます。 単純に $f(x)=x^n$ 、 $g(x)=1$ が直接的な拡張と言えるでしょう。 僕が気に入っているのは、 $f(x) = -ax$ 、 $g(x) = \dfrac{x^n}{n!}e^{-ax}$ の時で、 これは $e^{-ax}$ を無視して、 $\dfrac{x^n}{n!}$ 部分だけを微分する計算になります。 e^{-ax}\dfrac{d^k}{dx^k}e^{ax} \dfrac{x^n}{n!}e^{-ax} = \dfrac{d^k}{dx^k} \left( \dfrac{x^n}{n!} \right) e^{-ax} \tag{##} であり、 \left( \dfrac{d}{dx} -f^\prime(x) \right)^n \dfrac{x^n}{n!}e^{-ax} = \dfrac{d^k}{dx^k} \left( \dfrac{x^n}{n!} \right) e^{-ax} \tag{##} となります。 コメントをしておくと、僕は最初、線形代数のジョルダン標準形で出てくる、冪ゼロ因子の、 (A - \lambda I )^k \bm{v} &\neq 0 (k=1,2,3,\cdots,n-1) \\ (A - \lambda I )^k \bm{v} &= 0 (k=n) \tag{##} のアナロジー $\dfrac{d}{dx} \leftrightarrow \lambda I, f^\prime(x) \leftrightarrow A $ として、これを発見しました。 何か、面白い事が言えそうだと思っています。 今日はここまで、お疲れさまでした!! @@author:クロメル@@ @@accept:2019-09-16@@ @@category:物理数学@@ @@id:generalHermite@@