=================== ベクトル解析奮闘記2 =================== 大学に入ると”ベクトル解析”を習うのですが、高校でやる”ベクトル”よりも ちょっと手ごわそうです。黒板に先生が書いた式も、難しそうだし・・・。 もしよろしかったら私と一緒にベクトル解析の基本、やってみませんか。 (続き物なので ベクトル解析奮闘記1_ からお読みいただくと嬉しいです!) .. _ベクトル解析奮闘記1: http://www12.plala.or.jp/ksp/vectoranalysis/vecFuntou1/ 自宅で復習(divの巻) ------------------------ えーっと、 ${\rm div}$ か・・・。読みは”ダイバージェンス”(divergence=放射状に広がること)。 先生が黒板に書いた式は $\vec{A}$ をベクトル関数とすると \vec{A}=(A_x,A_y,A_z)と書けて、 {\rm div}\vec{A}=\frac{\partial A_x}{\partial x}+\frac{\partial A_y}{\partial y}+\frac{\partial A_z}{\partial z} ですか・・・。偏微分記号 $\partial$ は少し見慣れてきました。今度は ${\rm grad}$ と逆に、ベクトルからスカラーを作っていますね。 ベクトル関数 ------------------------ まずベクトル関数というものですが、空間の一点で決まるベクトル、つまり、空中に矢印がいっぱい浮かんでいて(下図参照)、一点(例えば点 $P$ )を指定すると長さと方向(向き)を指定した矢印が一つだけ決まる(ベクトルがたったひとつ決まる)という事のようですね。その時、ベクトルの始点はどことは決まっていないのですが、点 $P$ をずばり始点に考えるとわかりやすいかもしれません。 .. image:: yakan-vec2-fig6.png 3次元ベクトルなので $x$ 軸、 $y$ 軸、 $z$ 軸方向の成分が3つあるというわけですか・・・。ここで紛らわしいのは、それぞれの各成分( $A_x$ など) が、一点 $(x,y,z)$ の値で決まる、つまり $x$ , $y$ , $z$ 3つで決まるという事ですね( $A_x$ が $x$ 1個だけで決まるわけではない、と)。 $A_x$ , $A_y$ , $A_z$ それぞれは別個のスカラー関数だから、替わりに $F$ , $G$ , $H$ と書くと、  \vec{A}=(F,G,H) の方が誤解が少ないかな(同じか・・・)。 量が湧き出す小箱? ------------------ さて、先生が黒板に書いた図によるご説明では、”直方体のような図形を通過するときにどのくらい数値が増加するかを考える”とおっしゃっていましたっけ。”要するに湧き出し口ですよ!”とも言われていましたが、そこの地点を境に量(値)が増える、という意味でしょうか。 辺の長さがそれぞれ h , i , j の直方体を例に考えてみましょう(本や講義では、 $\Delta x,\Delta y,\Delta z$ を使っています)(下図参照)。 .. image:: yakan-vec2-fig1.png もう一度自分の使い慣れた記号を使って書いてみます。直方体への, ある面 $A$ からの単位面積あたりの流入量(例えば温泉のお湯とか)を $F(x)$ とします。面 $A$ と平行な面 $B$ までの距離を $h$ ,長さ $h$ の辺に平行に $x$ 軸,同様に $i$ の辺に平行に $y$ 軸, $j$ の辺に平行に $z$ 軸をとると, 面 $B$ からの単位面積あたりの流出量は $F(x+h)$ となります(下図参照)。 .. image:: yakan-vec2-fig2.png それぞれの面の面積は $ij$ だから、直方体を通る事による正味増加量は、それぞれ面積をかけて引き算すると、 &ijF(x+h)-ijF(x) \\ \\ &=ij\{F(x+h)-F(x) \} \\ \\ &=hij\frac{F(x+h)-F(x)}{h} 良く見ると最後の式の $hij$ は直方体の体積、その右は $h$ を $0$ に近づけた時、 $F(x)$ の導関数(微分して得られる関数)の定義式になっているから $hij$ を体積 $V$ 、 $F$ は $x,y,z$ 3変数の関数だけど、 $h$ を $0$ に近づけた場合( $h$ を非常に短い辺と考えて)、 $x$ に対してだけの微分(偏微分)になるから $\partial$ を使って、右辺は V\frac{\partial F}{\partial x} と書けますね。 実際にはあと対向する二組の面があるから、同様に( $x$ と同様に $y$ の場合、 $z$ の場合をそれぞれ考えて) $y$ の場合(以下に図と式) .. image:: yakan-vec2-fig4.png &hjG(y+i)-hjG(y) \\ \\ &=hj\{G(y+i)-G(y) \} \\ \\ &=hij\frac{G(y+i)-G(y)}{i} 同様に $i$ を $0$ に近づけた極限を考えて、 V\frac{\partial G}{\partial y} $z$ の場合(以下に図と式) .. image:: yakan-vec2-fig5.png &hiH(z+j)-hiH(z) \\ \\ &=hi\{H(z+j)-H(z) \} \\ \\ &=hij\frac{H(z+j)-H(z)}{j} 同様に $j$ を $0$ に近づけた極限を考えて、 V\frac{\partial H}{\partial z} となります。 結局、3方向への増加分合計は、 V\frac{\partial F}{\partial x}+V\frac{\partial G}{\partial y}+V\frac{\partial H}{\partial z}=V \left( \frac{\partial F}{\partial x}+\frac{\partial G}{\partial y}+\frac{\partial H}{\partial z} \right) となるわけですね。右辺に体積 $V$ が掛け算されて総増加分になるという事は、その右側の偏微分が一杯あるカッコ内は、”単位体積あたりの増加分”に相当する、という事になりそうです。要するに長方形の各辺に対する変化率の極限をとり、3方向の和を考えると、数式上、掛け合わされた辺が体積を表すことになり、残りが丁度偏微分の和で表されるという事のようですね。 なるほどこれイコール ${\rm div}\vec{A}$ (ベクトル $A$ のダイバージェンス)ということですか。 $\vec{A}$ は成分が3つあるからベクトル(関数)というわけですが、単に、 $x$ 方向、 $y$ 方向、 $z$ 方向の値をそれぞれ個別に決める3つの関数の列記に過ぎない、と考えても間違いではないかもしれません。 数字を入れるとわかりやすいかも ------------------------ 例えば F=x+2y+3z G=4x+5y+6z H=7x+8y+9z とすると、 &{\rm div} \vec{A}(F,G,H) \\ \\ &=\frac{\partial F}{\partial x}+\frac{\partial G}{\partial y}+\frac{\partial H}{\partial z} \\ \\ &=\frac{\partial (x+2y+3z)}{\partial x}+\frac{\partial (4x+5y+6z)}{\partial y}+\frac{\partial (7x+8y+9z)}{\partial z} \\ \\ &=1+5+9 \\ \\ &=15 となるわけですね。う〜ん、わかったと言えばわかったような・・・。 果たして何の役に? --------------- ところでこの ${\rm div}$ の概念、一体どうゆう場面で使うのでしょうか? 先生がおっしゃるには上にも書いたように温泉の湧き出し口のようなもので(水中の一点から本当に温泉が湧いてきたら怖いですけど・・・)、小さい放射性物質から四方八方に広がる放射線、電磁気学では点電荷から周りに出る電気力線、などらしいです。教科書を見ると、 $\vec{D}$ を電束密度ベクトル、 $\rho$ を電荷密度とした時に {\rm div} \vec{D}= \rho という風に使うみたいですね。 電荷があると、電束が湧き出す・・・(とたんに難しそうに見えるから不思議です)。 (続き物なので ベクトル解析奮闘記1_ , ベクトル解析奮闘記3_ もお読みいただくと嬉しいです!) .. _ベクトル解析奮闘記1: http://www12.plala.or.jp/ksp/vectoranalysis/vecFuntou1/ .. _ベクトル解析奮闘記3: http://www12.plala.or.jp/ksp/vectoranalysis/vecFuntou3/ @@author:やかん@@ @@information:イラスト:崎間@@ @@accept:2005-10-12@@ @@category: ベクトル解析@@ @@id: vecFuntou2@@