=================================== 合成関数の微分への利用 =================================== 任意の関数を偏微分しようと思ったら、関数の形だけ微分の公式を見つけなければなりません。 その公式を見つける際に、もとの関数を合成関数として見る方法があります。 そうすることで関数の偏微分するという問題は、合成関数の偏微分の問題に変わります。 この方法の利点は、ごく限られた微分の公式を覚えているだけで、多くの偏微分の公式を見つけることが可能になるのです。 ここでは、掲示板でよせられた質問についてのみ考えていきます。一般的な議論についてはここでは扱いませんので、あらかじめ ご了承下さい。 質問と解説 -------------------------------- 掲示板で次のような問題について質問がよせられてきました。 質問 ^^^^^^^^^^^ 位置ベクトル ${\bm{r} = x\bm{e}_{x} + y \bm{e}_{y} + z \bm{e}_{z}}$ の動径距離 ${|\bm{r}| = r = \sqrt{x^2 +y^2 +z^2}}$ を直交成分 ${x,y,z}$ で偏微分すると、どうして次のようになるのですか。 \nabla \bm{r} = \frac{\partial r}{\partial \bm{r}} &= \begin{pmatrix} \frac{\partial }{\partial x} \bm{e}_{x} + \frac{\partial }{\partial y} \bm{e}_{y} + \frac{\partial }{\partial z} \bm{e}_{z} \end{pmatrix} r\\ &= \frac{\partial r}{\partial x} \bm{e}_{x} + \frac{\partial r}{\partial y} \bm{e}_{y} + \frac{\partial r}{\partial z} \bm{e}_{z}\\ &= \frac{x}{r} \bm{e}_{x} + \frac{y}{r} \bm{e}_{y} + \frac{z}{r} \bm{e}_{z}\\ &= \frac{x\bm{e}_{x} + y \bm{e}_{y} + z \bm{e}_{z}}{r}\\ &= \frac{\bm{r}}{r} \tag{1} 解説 ^^^^^^^^^^^ この問題の場合、関数 $r$ を次のような合成関数として見るのが便利です。 &f = f(x,y,z) \tag{2}\\ &r = r(x,y,z) = r(f) \tag{3} すると偏微分は合成関数の偏微分の公式 \frac{\partial r}{\partial x} = \frac{\partial r}{\partial f} \frac{\partial f}{\partial x} \tag{4} が使えます。 $\tag{2}$ , $\tag{3}$ に具体的な関数を書き込むと、次のようになります。 &f = x^2 +y^2 +z^2 \tag{5}\\ &r = \sqrt{x^2 +y^2 +z^2 } = \sqrt{f} \tag{6} これでもう計算の準備が整いました。分からない方もいるかもしれませんので、ここでひとこと説明を加えておきます。 結局、ここで説明している計算の方法としては ${\tag{5}}$ , $\tag{6}$ のように、適当に微分の公式が使えるような 関数のかたちとして見て、それらを $\tag{4}$ 式に代入して計算をおしすすめていこうという方針です。数式で示すと、次の通りです。 &\frac{\partial f}{\partial x} = 2x \tag{7}\\ &\frac{\partial r}{\partial f} = \frac{1}{2} f^{\frac{1}{2} - 1} =\frac{1}{2} f^{-\frac{1}{2}} =\frac{1}{2 \sqrt{x^2 + y^2 +z^2}}\tag{8}\\ &\frac{\partial r}{\partial x} = 2x \frac{1}{2 \sqrt{x^2 + y^2 +z^2}} = \frac{x}{\sqrt{x^2 + y^2 +z^2}} = \frac{x}{r} \tag{9} ただし $\tag{7}$ と $\tag{8}$ で、次の公式の $n=2$ の場合と $n=1/2$ の場合を使っています。( $g:$ 関数) \frac{\partial g^{n}}{\partial g} = n g^{n-1} (n \neq 0 ) \tag{10} 後の $y,z$ についての偏微分についても同じ方法でもとまります。結果だけ書いておくと &\frac{\partial r}{\partial y} = \frac{y}{r} \tag{11}\\ &\frac{\partial r}{\partial y} = \frac{y}{r} \tag{12} です。こうして $\tag{9}$ , $\tag{11}$ , $\tag{12}$ から $\tag{1}$ が得られる事が示されました。 補足説明 ^^^^^^^^^^ ここでは与えた式 $\tag{4}$ の導出を説明しておきます。 実はこの式は、全微分 $df,dr$ から自然に出てくる式です。これらの全微分の具体的なかたちは $\tag{2}$ , $\tag{3}$ より &df = \frac{\partial f}{\partial x}dx + \frac{\partial f}{\partial y}dy + \frac{\partial f}{\partial z}dz \tag{13}\\ &dr = \frac{\partial r}{\partial x}dx + \frac{\partial r}{\partial y}dy + \frac{\partial r}{\partial z}dz = \frac{\partial r}{\partial f}df \tag{14} になります。 $\tag{13}$ を $\tag{14}$ の最後のところに代入することによって \frac{\partial r}{\partial x}dx + \frac{\partial r}{\partial y}dy + \frac{\partial r}{\partial z}dz = \frac{\partial r}{\partial f}\frac{\partial f}{\partial x}dx + \frac{\partial r}{\partial f}\frac{\partial f}{\partial y}dy + \frac{\partial r}{\partial f}\frac{\partial f}{\partial z}dz が成り立つことが分かります。両辺を比較すると公式として与えた式 $\tag{4}$ が出てくるというわけです。 &\frac{\partial r}{\partial x} = \frac{\partial r}{\partial f} \frac{\partial f}{\partial x} \\ &\frac{\partial r}{\partial y} = \frac{\partial r}{\partial f} \frac{\partial f}{\partial y} \tag{16}\\ &\frac{\partial r}{\partial z} = \frac{\partial r}{\partial f} \frac{\partial f}{\partial z} \tag{17} 重要事項(まとめ) ^^^^^^^^^^^^^^^^^ 関数を何の関数として見るかが、重要。 練習問題 ---------- 練習問題1. ^^^^^^^^^^^ 次の式の微分を $\tag{4}$ , $\tag{10}$ を使って求めてください。 \nabla \frac{1}{r} \tag{18} 練習問題2. ^^^^^^^^^^^ 位置 ${\bm{r}_1}$ に電荷が ${-q}$ 、位置 $\bm{r}$ に電荷が ${q}$ があるとします。 ${\left( \bm{r}_2 - \bm{r}_1 = \bm{l} \right)}$ で一定 のとき、位置 ${\bm{r}}$ における電場を ${\left( r >> l \right)}$ の範囲での近似解を計算してください。 このときの電位 ${V(\bm{r})}$ は近似的に次のように書けます。 V(\bm{r}) \simeq \frac{q \bm{l}\cdot \bm{r}}{4 \pi \epsilon r^{3}} \tag{19}