物理のかぎしっぽ 記事ソース/とある外微分の公式 の変更点

 #rst2hooktail_source
 ============================================================
 とある外微分の公式
 ============================================================
 
 この記事では、参考文献『理論物理学のための幾何学とトポロジーI』にある有用な公式について説明します。
 短い記事です。
 
 公式
 =============
 
 公式とは、 $X=X^\mu \dfrac{\partial}{\partial x^\mu},Y=Y^\nu \dfrac{\partial}{\partial x^\nu}$ をベクトル場とし、一形式 $\omega=\omega_\mu dx^\mu$ とします。
 
 <tex>
 d \omega(X,Y) = X[\omega(Y)]-Y[\omega(X)]-\omega([X,Y]) \tag{##}
 </tex>
 
 というものです。参考文献には $d \omega([X,Y])$ とありますが、これは誤植です。
 
 さらに勘違いしやすい点として、スカラー $f$ に対して、 $X[f] = X^\mu(\partial_\mu f)$ という、 $X[f]$ はベクトルのスカラー倍ではなく、スカラーを表しています。
 
 公式の証明
 ================
 
 まず、与式の左辺は、
 
 <tex>
 d \omega(X,Y) &= \dfrac{\partial \omega_\mu}{\partial x^\nu} dx^\nu \wedge dx^\mu \left( X^\lambda \dfrac{\partial}{\partial x^\lambda}, Y^\kappa \dfrac{\partial}{\partial x^\kappa} \right) \\
 &= \dfrac{\partial \omega_\mu}{\partial x^\nu} \left( dx^\nu \otimes dx^\mu - dx^\mu \otimes dx^\nu \right) \left( X^\lambda \dfrac{\partial}{\partial x^\lambda}, Y^\kappa \dfrac{\partial}{\partial x^\kappa} \right) \\
 &= \dfrac{\partial \omega_\mu}{\partial x^\nu} \left( dx^\nu \left( X^\lambda \dfrac{\partial}{\partial x^\lambda} \right) \otimes dx^\mu \left( Y^\kappa \dfrac{\partial}{\partial x^\kappa} \right)  - dx^\mu \left( X^\lambda \dfrac{\partial}{\partial x^\lambda} \right) \otimes dx^\nu \left( Y^\kappa \dfrac{\partial}{\partial x^\kappa} \right) \right) \\
 &= \dfrac{\partial \omega_\mu}{\partial x^\nu} \left( X^\lambda \delta^\nu_\lambda Y^\kappa \delta^\mu_\kappa - X^\lambda \delta^\mu_\lambda Y^\kappa \delta^\nu_\kappa \right) \\
 &= \dfrac{\partial \omega_\mu}{\partial x^\nu} \left( X^\nu Y^\mu - X^\mu Y^\nu \right)
 \tag{##}
 </tex>
 
 となります。
 
 また、与式の右辺は、
 
 <tex>
 X[\omega(Y)]-Y[\omega(X)]-\omega([X,Y]) 
 &= X^\nu \partial_\nu(\omega_\mu Y^\mu) - X^\nu Y^\nu \partial_\nu(\omega_\mu X^\mu) - \omega_\lambda dx^\lambda \left( X^\nu \partial_\nu Y^\mu - Y^\nu \partial_\nu X^\mu \right) \dfrac{\partial}{\partial x^\mu} \\
 &= X^\nu \partial_\nu(\omega_\mu Y^\mu) - Y^\nu \partial_\nu(\omega_\mu X^\mu) - \omega_\lambda dx^\lambda \left( X^\nu \partial_\nu Y^\mu - Y^\nu \partial_\nu X^\mu \right) \dfrac{\partial}{\partial x^\mu} \\
 &= X^\nu (\partial_\nu \omega_\mu) Y^\mu + X^\nu \omega_\mu (\partial_\nu Y^\mu) - Y^\nu (\partial_\nu \omega_\mu) X^\mu - Y^\nu \omega_\mu(\partial_\nu X^\mu) - \omega_\lambda \left( X^\nu \partial_\nu Y^\mu - Y^\nu \partial_\nu X^\mu \right) \delta_\mu^\lambda \\
 &= X^\nu (\partial_\nu \omega_\mu) Y^\mu + \omega_\mu (\partial_\nu Y^\mu)  - Y^\nu (\partial_\nu \omega_\mu) X^\mu - Y^\nu \omega_\mu(\partial_\nu X^\mu) - \omega_\mu \left( X^\nu \partial_\nu Y^\mu - Y^\nu \partial_\nu X^\mu \right) \\
 &= X^\nu (\partial_\nu \omega_\mu) Y^\mu + X^\nu \omega_\mu (\partial_\nu Y^\mu)  - Y^\nu (\partial_\nu \omega_\mu) X^\mu - Y^\nu \omega_\mu(\partial_\nu X^\mu) - \omega_\mu \left( X^\nu \partial_\nu Y^\mu - Y^\nu \partial_\nu X^\mu \right) \\
 &= X^\nu \dfrac{\partial \omega_\mu}{\partial x^\nu} Y^\mu  - Y^\nu \dfrac{\partial \omega_\mu}{\partial x^\nu} X^\mu \\
 &= \dfrac{\partial \omega_\mu}{\partial x^\nu} \left( X^\nu Y^\mu - X^\mu Y^\nu \right)
 \tag{##} 
 </tex>
 
 よって、両辺は一致しました。これで式 $(1)$ が示せました。
 今日はここまで、お疲れさまでした。
 
 @@reference: 中原幹夫 佐久間一浩,理論物理学のための幾何学とトポロジーI(第二版),ピアソン・エデュケーション社,2018,p203,4535788065@@
 
 @@author:クロメル@@
 @@accept:2020-01-18@@
 @@category:微分・位相幾何@@
 @@id:formulaOfExteriorDerivative@@
トップ   編集 差分 バックアップ 添付 複製 名前変更 リロード   新規 一覧 単語検索 最終更新   ヘルプ   最終更新のRSS
Modified by 物理のかぎプロジェクト PukiWiki 1.4.6 Copyright © 2001-2005 PukiWiki Developers Team. License is GPL.
Based on "PukiWiki" 1.3 by yu-ji Powered by PHP 5.2.17 HTML convert time to 0.030 sec.