物理のかぎしっぽ 記事ソース/波の式2

記事ソース/波の式2

これはrst2hooktailの記事ソース保存・変換用です(詳細).

コンバート

最近コンバートされた結果: HTMLPDFTeX

公開・更新メニュー ▼▲

記事ソースの内容

========================================
波の式2
========================================

波の式1_ では,波源が原点にあって $y(0, t)=A\sin 2\pi \frac{t}{T}$ ( $A$ は振幅, $T$ は周期)という振動をしている場合について, $x>0$ の
領域でどのような振動になっているかを学びました.波の式2では,この場合の $x<0$ の領域での振動や,
波源の振動が $y(0, t)=A\sin 2\pi \frac{t}{T}$ でない場合の振動,そして,波源が原点以外の点にある場合の振動についてみていきます.
以下では,波長を $\lambda$ ,波の伝わる速さを $v$ とします.

x<0の領域ではどのような振動になっているか
---------------------------------------------------------------

波源が原点にあって $y(0, t)=A\sin 2\pi \frac{t}{T}$ という振動をしている場合, $x>0$ の領域では,

<tex>y(x, t)=A\sin \left(\frac{t}{T}-\frac{x}{\lambda} \right)</tex>

という振動をしていましたね.点 $x$ においては,「波源の振動が $\frac{x}{v}$ 秒遅れて伝わる」
ということから式を導いたのでした.では, $x<0$ の領域にはどのような振動が伝わっているのでしょうか.

.. image:: tomo-sinwave2-fig1.png

原点にある波源の振動が点 $x$ の位置まで伝わるのにかかる時間は, $\frac{(-x)}{v}$ 秒となります.
なぜ,マイナスがついているか,分かるでしょうか?
今, $x$ は負です.そのため, $\frac{x}{v}$ は負になってしまい,
「時間が経過している」ということと矛盾してしまいます.それを避けるために,
マイナスをつけて,値がプラスになるようにしているのです.

$\frac{(-x)}{v}$ 秒前の波源の振動が伝わってきているので, $x<0$ の領域では,

<tex>
\begin{array}{rl}
y(x, t) &= \displaystyle y\left(0, t-\frac{(-x)}{v}\right) \\
       &= \displaystyle A\sin 2\pi\frac{\left( t-\frac{(-x)}{v} \right)}{T} \\
       &= \displaystyle A\sin 2\pi\frac{\left( t+\frac{x}{v} \right)}{T} \\
\end{array}
</tex>

となります.少し書き換えてみますと,

<tex>
\begin{array}{rl}
y(x, t) &= \displaystyle A\sin \frac{2\pi}{T}\left(t+\frac{x}{v}\right) \\
       &= \displaystyle A\sin 2\pi \left(\frac{t}{T}+\frac{x}{vT}\right) \\
       &= \displaystyle A\sin 2\pi \left(\frac{t}{T}+\frac{x}{\lambda}\right)\\
\end{array}
</tex>

となります.

波源の振動がこれまでと違う場合はどうなるか
---------------------------------------------------------------

これまでは,波源の振動を

<tex>y(0, t)=A\sin 2\pi \frac{t}{T}</tex>

に限ってきました.これは,時刻 $t=0$ に媒質が点 $x=0$ を $y>0$ の方向に向かって通過する振動で,
言ってみれば特殊な場合です.しかし,波源は必ずしもそういった振動であるとは限りません.一般に波源の振動は,

<tex>y(0, t)=A\sin \left( 2\pi \frac{t}{T} +\alpha \right)</tex>

と表すことができます.この振動では, $y(0, 0)=A\sin \alpha$ となりますね( $\alpha$ を「初期位相」と呼びます).
さて,このとき点 $x$ ではどのような振動になるでしょうか.波源の振動が, $x>0$ の領域では
$\frac{x}{v}$ 秒だけ遅れて, $x<0$ の領域では $\frac{(-x)}{v}$ だけ遅れて伝わることは,
もう分かりますね.したがって, $x<0$ の領域では

<tex>y(x, t)=y\left(0, t-\frac{x}{v} \right)= \displaystyle A\sin 2\pi \left(\frac{t}{T}-\frac{x}{\lambda} +\alpha\right)</tex>

$x>0$ の領域では

<tex>y(x, t)=y\left(0, t-\frac{(-x)}{v} \right)= \displaystyle A\sin 2\pi \left(\frac{t}{T}+\frac{x}{\lambda} +\alpha\right)</tex>

となるわけです.

波源が原点以外の点にある場合はどうなるか
---------------------------------------------------------------

これまでは,波源が原点にある場合を扱ってきました.では,波源が原点以外の点にある場合は,どうなるのでしょうか.
波源が点 $x_1$ にあって,

<tex>y(x_1, t)= \displaystyle A\sin \left( 2\pi \frac{t}{T} +\alpha\right)</tex>

という振動をしている場合を考えてみましょう.

$x>x_1$ の領域の点 $x$ には,波源の振動が $\frac{x-x_1}{v}$ 秒遅れて伝わってきます.

.. image:: tomo-sinwave2-fig2.png

したがって,

<tex>
\begin{array}{rl}
y(x, t) &= y\displaystyle \left(x_1, t-\frac{x-x_1}{v}\right) \\
       &= \displaystyle A\sin \left( 2\pi \frac{t-\frac{x-x_1}{v}}{T}+\alpha \right)\\
       &= \displaystyle A\sin \left( \frac{2\pi}{T}\left(t-\frac{x-x_1}{v}\right) +\alpha \right)\\
       &= \displaystyle A\sin \left( 2\pi \left(\frac{t}{T}-\frac{x-x_1}{\lambda}\right) +\alpha \right)\\
\end{array}
</tex>

と求まります.

問
~~~~~~~~~
波源が点 $x_1$ にあって,

<tex>y(x_1, t)= \displaystyle A\sin \left( 2\pi \frac{t}{T} +\alpha\right)</tex>

という振動をしている場合, $x<x_1$ の領域ではどのような振動になるか.

まとめ
---------------------------------------------------------------

波の式を求めるのに考えなければならないことは,

- 波源はどこにあるのか
- 波源はどのような振動をしているか
- 振動の様子を知りたい点には,波源の振動が何秒遅れて伝わってきているか

の3つです.・・・と聞いて,「ふむふむ」と思えた人はもう大丈夫です.

.. _波の式1: http://www12.plala.or.jp/ksp/wave/sinWave1/index.html

@@author: tomo@@
@@accept: 2005-07-10@@
@@category: 波と振動@@
@@information: イラスト:崎間@@
@@id:sinWave2@@
トップ   編集 凍結 差分 バックアップ 添付 複製 名前変更 リロード   新規 一覧 単語検索 最終更新   ヘルプ   最終更新のRSS
Modified by 物理のかぎプロジェクト PukiWiki 1.4.6 Copyright © 2001-2005 PukiWiki Developers Team. License is GPL.
Based on "PukiWiki" 1.3 by yu-ji Powered by PHP 5.3.29 HTML convert time to 0.009 sec.