
reStructuredText Markup Specification

David Goodger

goodger@users.sourceforge.net

2005-06-17 17:20:28 +0200 (Fri, 17 Jun 2005)

i

目次

第 1章 Quick Syntax Overview 1

第 2章 Syntax Details 5

2.1 Whitespace . 5

2.2 Escaping Mechanism . 7

2.3 Reference Names . 8

2.4 Document Structure . 9

2.5 Body Elements . 12

2.6 Implicit Hyperlink Targets . 42

2.7 Inline Markup . 42

2.8 Units . 51

第 3章 Error Handling 52

1

第 1章

Quick Syntax Overview

A reStructuredText document is made up of body or block-level elements, and may be structured

into sections. Sections are indicated through title style (underlines & optional overlines). Sections

contain body elements and/or subsections. Some body elements contain further elements, such as

lists containing list items, which in turn may contain paragraphs and other body elements. Others,

such as paragraphs, contain text and inline markup elements.

Here are examples of body elements:

• Paragraphs (and inline markup):

Paragraphs contain text and may contain inline markup:

emphasis, **strong emphasis**, ‘interpreted text‘, ‘‘inline

literals‘‘, standalone hyperlinks (http://www.python.org),

external hyperlinks (Python), internal cross-references

(example), footnote references ([1]), citation references

([CIT2002]), substitution references (|example|), and ‘inline

internal targets‘.

Paragraphs are separated by blank lines and are left-aligned.

• Five types of lists:

1. Bullet lists:

- This is a bullet list.

- Bullets can be "-", "*", or "+".

2. Enumerated lists:

1. This is an enumerated list.

2. Enumerators may be arabic numbers, letters, or roman

numerals.

3. Definition lists:

what

第 1章 Quick Syntax Overview 2

Definition lists associate a term with a definition.

how

The term is a one-line phrase, and the definition is one

or more paragraphs or body elements, indented relative to

the term.

4. Field lists:

:what: Field lists map field names to field bodies, like

database records. They are often part of an extension

syntax.

:how: The field marker is a colon, the field name, and a

colon.

The field body may contain one or more body elements,

indented relative to the field marker.

5. Option lists, for listing command-line options:

-a command-line option "a"

-b file options can have arguments

and long descriptions

--long options can be long also

--input=file long options can also have

arguments

/V DOS/VMS-style options too

There must be at least two spaces between the option and the description.

• Literal blocks:

Literal blocks are either indented or line-prefix-quoted blocks,

and indicated with a double-colon ("::") at the end of the

preceding paragraph (right here -->)::

if literal block:

text = ’is left as-is’

spaces and linebreaks = ’are preserved’

markup processing = None

• Block quotes:

Block quotes consist of indented body elements:

This theory, that is mine, is mine.

-- Anne Elk (Miss)

http://www/

第 1章 Quick Syntax Overview 3

• Doctest blocks:

>>> print ’Python-specific usage examples; begun with ">>>"’

Python-specific usage examples; begun with ">>>"

>>> print ’(cut and pasted from interactive Python sessions)’

(cut and pasted from interactive Python sessions)

• Two syntaxes for tables:

1. Grid tables; complete, but complex and verbose:

+------------------------+------------+----------+

| Header row, column 1 | Header 2 | Header 3 |

+========================+============+==========+

| body row 1, column 1 | column 2 | column 3 |

+------------------------+------------+----------+

| body row 2 | Cells may span |

+------------------------+-----------------------+

2. Simple tables; easy and compact, but limited:

==================== ========== ==========

Header row, column 1 Header 2 Header 3

==================== ========== ==========

body row 1, column 1 column 2 column 3

body row 2 Cells may span columns

==================== ======================

• Explicit markup blocks all begin with an explicit block marker, two periods and a space:

– Footnotes:

.. [1] A footnote contains body elements, consistently

indented by at least 3 spaces.

– Citations:

.. [CIT2002] Just like a footnote, except the label is

textual.

– Hyperlink targets:

.. Python: http://www.python.org

.. example:

The " example" target above points to this paragraph.

– Directives:

.. image:: mylogo.png

– Substitution definitions:

.. |symbol here| image:: symbol.png

– Comments:

.. Comments begin with two dots and a space. Anything may

第 1章 Quick Syntax Overview 4

follow, except for the syntax of footnotes/citations,

hyperlink targets, directives, or substitution definitions.

5

第 2章

Syntax Details

Descriptions below list “doctree elements” (document tree element names; XML DTD generic

identifiers) corresponding to syntax constructs. For details on the hierarchy of elements, please see

The Docutils Document Tree and the Docutils Generic DTD XML document type definition.

2.1 Whitespace

Spaces are recommended for indentation, but tabs may also be used. Tabs will be converted to

spaces. Tab stops are at every 8th column.

Other whitespace characters (form feeds [chr(12)] and vertical tabs [chr(11)]) are converted to

single spaces before processing.

2.1.1 Blank Lines

Blank lines are used to separate paragraphs and other elements. Multiple successive blank lines

are equivalent to a single blank line, except within literal blocks (where all whitespace is preserved).

Blank lines may be omitted when the markup makes element separation unambiguous, in conjunction

with indentation. The first line of a document is treated as if it is preceded by a blank line, and the

last line of a document is treated as if it is followed by a blank line.

2.1.2 Indentation

Indentation is used to indicate, and is only significant in indicating:

• multi-line contents of list items,

• multiple body elements within a list item (including nested lists),

• the definition part of a definition list item,

• block quotes,

• the extent of literal blocks, and

• the extent of explicit markup blocks.

file:../doctree.html
file:../docutils.dtd

第 2章 Syntax Details 6

Any text whose indentation is less than that of the current level (i.e., unindented text or “dedents”)

ends the current level of indentation.

Since all indentation is significant, the level of indentation must be consistent. For example,

indentation is the sole markup indicator for block quotes:

This is a top-level paragraph.

This paragraph belongs to a first-level block quote.

Paragraph 2 of the first-level block quote.

Multiple levels of indentation within a block quote will result in more complex structures:

This is a top-level paragraph.

This paragraph belongs to a first-level block quote.

This paragraph belongs to a second-level block quote.

Another top-level paragraph.

This paragraph belongs to a second-level block quote.

This paragraph belongs to a first-level block quote. The

second-level block quote above is inside this first-level

block quote.

When a paragraph or other construct consists of more than one line of text, the lines must be

left-aligned:

This is a paragraph. The lines of

this paragraph are aligned at the left.

This paragraph has problems. The

lines are not left-aligned. In addition

to potential misinterpretation, warning

and/or error messages will be generated

by the parser.

Several constructs begin with a marker, and the body of the construct must be indented relative to

the marker. For constructs using simple markers (bullet lists, enumerated lists, footnotes, citations,

hyperlink targets, directives, and comments), the level of indentation of the body is determined by

the position of the first line of text, which begins on the same line as the marker. For example,

第 2章 Syntax Details 7

bullet list bodies must be indented by at least two columns relative to the left edge of the bullet:

- This is the first line of a bullet list

item’s paragraph. All lines must align

relative to the first line. [1]

This indented paragraph is interpreted

as a block quote.

Because it is not sufficiently indented,

this paragraph does not belong to the list

item.

.. [1] Here’s a footnote. The second line is aligned

with the beginning of the footnote label. The ".."

marker is what determines the indentation.

For constructs using complex markers (field lists and option lists), where the marker may contain

arbitrary text, the indentation of the first line after the marker determines the left edge of the body.

For example, field lists may have very long markers (containing the field names):

:Hello: This field has a short field name, so aligning the field

body with the first line is feasible.

:Number-of-African-swallows-required-to-carry-a-coconut: It would

be very difficult to align the field body with the left edge

of the first line. It may even be preferable not to begin the

body on the same line as the marker.

2.2 Escaping Mechanism

The character set universally available to plaintext documents, 7-bit ASCII, is limited. No matter

what characters are used for markup, they will already have multiple meanings in written text.

Therefore markup characters will sometimes appear in text without being intended as markup.

Any serious markup system requires an escaping mechanism to override the default meaning of the

characters used for the markup. In reStructuredText we use the backslash, commonly used as an

escaping character in other domains.

A backslash followed by any character (except whitespace characters) escapes that character. The

escaped character represents the character itself, and is prevented from playing a role in any markup

interpretation. The backslash is removed from the output. A literal backslash is represented by two

backslashes in a row (the first backslash “escapes” the second, preventing it being interpreted in an

第 2章 Syntax Details 8

“escaping” role).

Backslash-escaped whitespace characters are removed from the document. This allows for

character-level inline markup.

There are two contexts in which backslashes have no special meaning: literal blocks and inline

literals. In these contexts, a single backslash represents a literal backslash, without having to double

up.

Please note that the reStructuredText specification and parser do not address the issue of the

representation or extraction of text input (how and in what form the text actually reaches the parser).

Backslashes and other characters may serve a character-escaping purpose in certain contexts and

must be dealt with appropriately. For example, Python uses backslashes in strings to escape certain

characters, but not others. The simplest solution when backslashes appear in Python docstrings is

to use raw docstrings:

r"""This is a raw docstring. Backslashes (\) are not touched."""

2.3 Reference Names

Simple reference names are single words consisting of alphanumerics plus isolated (no two adjacent)

internal hyphens, underscores, and periods; no whitespace or other characters are allowed. Foot-

note labels (Footnotes & Footnote References), citation labels (Citations & Citation References),

interpreted text roles, and some hyperlink references use the simple reference name syntax.

Reference names using punctuation or whose names are phrases (two or more space-separated

words) are called “phrase-references”. Phrase-references are expressed by enclosing the phrase in

backquotes and treating the backquoted text as a reference name:

Want to learn about ‘my favorite programming language‘ ?

.. my favorite programming language: http://www.python.org

Simple reference names may also optionally use backquotes.

Reference names are whitespace-neutral and case-insensitive. When resolving reference names

internally:

• whitespace is normalized (one or more spaces, horizontal or vertical tabs, newlines, carriage

returns, or form feeds, are interpreted as a single space), and

• case is normalized (all alphabetic characters are converted to lowercase).

For example, the following hyperlink references are equivalent:

- ‘A HYPERLINK‘

- ‘a hyperlink‘

- ‘A

第 2章 Syntax Details 9

Hyperlink‘

Hyperlinks, footnotes, and citations all share the same namespace for reference names. The labels

of citations (simple reference names) and manually-numbered footnotes (numbers) are entered into

the same database as other hyperlink names. This means that a footnote (defined as “.. [1]”)

which can be referred to by a footnote reference ([1]), can also be referred to by a plain hyperlink

reference (1). Of course, each type of reference (hyperlink, footnote, citation) may be processed and

rendered differently. Some care should be taken to avoid reference name conflicts.

2.4 Document Structure

2.4.1 Document

Doctree element: document.

The top-level element of a parsed reStructuredText document is the “document” element. After

initial parsing, the document element is a simple container for a document fragment, consisting

of body elements, transitions, and sections, but lacking a document title or other bibliographic

elements. The code that calls the parser may choose to run one or more optional post-parse trans-

forms, rearranging the document fragment into a complete document with a title and possibly other

metadata elements (author, date, etc.; see Bibliographic Fields).

Specifically, there is no way to indicate a document title and subtitle explicitly in reStructuredText.

Instead, a lone top-level section title (see Sections below) can be treated as the document title.

Similarly, a lone second-level section title immediately after the “document title” can become the

document subtitle. The rest of the sections are then lifted up a level or two. See the DocTitle

transform for details.

2.4.2 Sections

Doctree elements: section, title.

Sections are identified through their titles, which are marked up with adornment: “underlines”

below the title text, or underlines and matching “overlines” above the title. An underline/overline

is a single repeated punctuation character that begins in column 1 and forms a line extending at

least as far as the right edge of the title text. Specifically, an underline/overline character may

be any non-alphanumeric printable 7-bit ASCII character*1. When an overline is used, the length

and character used must match the underline. Underline-only adornment styles are distinct from

overline-and-underline styles that use the same character. There may be any number of levels of

section titles, although some output formats may have limits (HTML has 6 levels).

*1 The following are all valid section title adornment characters:

! " # \$ % & ’ () * + , - . / : ; < = > ? @ [\] ^ ‘ { | } ~

Some characters are more suitable than others. The following are recommended:

= - ‘ : . ’ " ~ ^ * + #

http://docutils.sourceforge.net/docutils/transforms/
http://docutils.sourceforge.net/docutils/transforms/
http://docutils.sourceforge.net/docutils/transforms/frontmatter.py
http://docutils.sourceforge.net/docutils/transforms/frontmatter.py

第 2章 Syntax Details 10

Rather than imposing a fixed number and order of section title adornment styles, the order enforced

will be the order as encountered. The first style encountered will be an outermost title (like HTML

H1), the second style will be a subtitle, the third will be a subsubtitle, and so on.

Below are examples of section title styles:

===============

Section Title

===============

Section Title

Section Title

=============

Section Title

Section Title

‘‘‘‘‘‘‘‘‘‘‘‘‘

Section Title

’’’’’’’’’’’’’

Section Title

.............

Section Title

~~~~~~~~~~~~~

Section Title

*************

Section Title

+++++++++++++

Section Title

^^^^^^^^^^^^^

When a title has both an underline and an overline, the title text may be inset, as in the first two



第 2章 Syntax Details 11

examples above. This is merely aesthetic and not significant. Underline-only title text may not be

inset.

A blank line after a title is optional. All text blocks up to the next title of the same or higher level

are included in a section (or subsection, etc.).

All section title styles need not be used, nor need any specific section title style be used. However, a

document must be consistent in its use of section titles: once a hierarchy of title styles is established,

sections must use that hierarchy.

Each section title automatically generates a hyperlink target pointing to the section. The text of

the hyperlink target (the “reference name”) is the same as that of the section title. See Implicit

Hyperlink Targets for a complete description.

Sections may contain body elements, transitions, and nested sections.

2.4.3 Transitions

Doctree element: transition.

Instead of subheads, extra space or a type ornament between paragraphs may be used to mark

text divisions or to signal changes in subject or emphasis.

(The Chicago Manual of Style, 14th edition, section 1.80)

Transitions are commonly seen in novels and short fiction, as a gap spanning one or more lines, with

or without a type ornament such as a row of asterisks. Transitions separate other body elements. A

transition should not begin or end a section or document, nor should two transitions be immediately

adjacent.

The syntax for a transition marker is a horizontal line of 4 or more repeated punctuation characters.

The syntax is the same as section title underlines without title text. Transition markers require blank

lines before and after:

Para.

----------

Para.

Unlike section title underlines, no hierarchy of transition markers is enforced, nor do differences in

transition markers accomplish anything. It is recommended that a single consistent style be used.

The processing system is free to render transitions in output in any way it likes. For example,

horizontal rules (<hr>) in HTML output would be an obvious choice.



第 2章 Syntax Details 12

2.5 Body Elements

2.5.1 Paragraphs

Doctree element: paragraph.

Paragraphs consist of blocks of left-aligned text with no markup indicating any other body element.

Blank lines separate paragraphs from each other and from other body elements. Paragraphs may

contain inline markup.

Syntax diagram:

+------------------------------+

| paragraph |

| |

+------------------------------+

+------------------------------+

| paragraph |

| |

+------------------------------+

2.5.2 Bullet Lists

Doctree elements: bullet list, list item.

A text block which begins with a “-”, “*”, or “+”, followed by whitespace, is a bullet list item

(a.k.a. “unordered” list item). List item bodies must be left-aligned and indented relative to the

bullet; the text immediately after the bullet determines the indentation. For example:

- This is the first bullet list item. The blank line above the

first list item is required; blank lines between list items

(such as below this paragraph) are optional.

- This is the first paragraph in the second item in the list.

This is the second paragraph in the second item in the list.

The blank line above this paragraph is required. The left edge

of this paragraph lines up with the paragraph above, both

indented relative to the bullet.

- This is a sublist. The bullet lines up with the left edge of

the text blocks above. A sublist is a new list so requires a



第 2章 Syntax Details 13

blank line above and below.

- This is the third item of the main list.

This paragraph is not part of the list.

Here are examples of incorrectly formatted bullet lists:

- This first line is fine.

A blank line is required between list items and paragraphs.

(Warning)

- The following line appears to be a new sublist, but it is not:

- This is a paragraph continuation, not a sublist (since there’s

no blank line). This line is also incorrectly indented.

- Warnings may be issued by the implementation.

Syntax diagram:

+------+-----------------------+

| "- " | list item |

+------| (body elements)+ |

+-----------------------+

2.5.3 Enumerated Lists

Doctree elements: enumerated list, list item.

Enumerated lists (a.k.a. “ordered” lists) are similar to bullet lists, but use enumerators instead

of bullets. An enumerator consists of an enumeration sequence member and formatting, followed by

whitespace. The following enumeration sequences are recognized:

• arabic numerals: 1, 2, 3, ... (no upper limit).

• uppercase alphabet characters: A, B, C, ..., Z.

• lower-case alphabet characters: a, b, c, ..., z.

• uppercase Roman numerals: I, II, III, IV, ..., MMMMCMXCIX (4999).

• lowercase Roman numerals: i, ii, iii, iv, ..., mmmmcmxcix (4999).

In addition, the auto-enumerator, “#”, may be used to automatically enumerate a list. Auto-

enumerated lists may begin with explicit enumeration, which sets the sequence. Fully auto-

enumerated lists use arabic numerals and begin with 1.

The following formatting types are recognized:

• suffixed with a period: “1.”, “A.”, “a.”, “I.”, “i.”.



第 2章 Syntax Details 14

• surrounded by parentheses: “(1)”, “(A)”, “(a)”, “(I)”, “(i)”.

• suffixed with a right-parenthesis: “1)”, “A)”, “a)”, “I)”, “i)”.

While parsing an enumerated list, a new list will be started whenever:

• An enumerator is encountered which does not have the same format and sequence type as the

current list (e.g. “1.”, “(a)” produces two separate lists).

• The enumerators are not in sequence (e.g., “1.”, “3.” produces two separate lists).

It is recommended that the enumerator of the first list item be ordinal-1 (“1”, “A”, “a”, “I”, or

“i”). Although other start-values will be recognized, they may not be supported by the output

format. A level-1 [info] system message will be generated for any list beginning with a non-ordinal-1

enumerator.

Lists using Roman numerals must begin with “I”/“i” or a multi-character value, such as “II”

or “XV”. Any other single-character Roman numeral (“V”, “X”, “L”, “C”, “D”, “M”) will be

interpreted as a letter of the alphabet, not as a Roman numeral. Likewise, lists using letters of the

alphabet may not begin with “I”/“i”, since these are recognized as Roman numeral 1.

The second line of each enumerated list item is checked for validity. This is to prevent ordinary

paragraphs from being mistakenly interpreted as list items, when they happen to begin with text

identical to enumerators. For example, this text is parsed as an ordinary paragraph:

A. Einstein was a really

smart dude.

However, ambiguity cannot be avoided if the paragraph consists of only one line. This text is parsed

as an enumerated list item:

A. Einstein was a really smart dude.

If a single-line paragraph begins with text identical to an enumerator (“A.”, “1.”, “(b)”, “I)”, etc.),

the first character will have to be escaped in order to have the line parsed as an ordinary paragraph:

\A. Einstein was a really smart dude.

Nested enumerated lists must be created with indentation. For example:

1. Item 1.

a) Item 1a.

b) Item 1b.

Example syntax diagram:

+-------+----------------------+

| "1. " | list item |

+-------| (body elements)+ |



第 2章 Syntax Details 15

+----------------------+

2.5.4 Definition Lists

Doctree elements: definition list, definition list item, term, classifier, definition.

Each definition list item contains a term, optional classifiers, and a definition. A term is a simple

one-line word or phrase. Optional classifiers may follow the term on the same line, each after an

inline “ : ” (space, colon, space). A definition is a block indented relative to the term, and may

contain multiple paragraphs and other body elements. There may be no blank line between a term

line and a definition block (this distinguishes definition lists from block quotes). Blank lines are

required before the first and after the last definition list item, but are optional in-between. For

example:

term 1

Definition 1.

term 2

Definition 2, paragraph 1.

Definition 2, paragraph 2.

term 3 : classifier

Definition 3.

term 4 : classifier one : classifier two

Definition 4.

Inline markup is parsed in the term line before the classifier delimiter (“ : ”) is recognized. The

delimiter will only be recognized if it appears outside of any inline markup.

A definition list may be used in various ways, including:

• As a dictionary or glossary. The term is the word itself, a classifier may be used to indicate

the usage of the term (noun, verb, etc.), and the definition follows.

• To describe program variables. The term is the variable name, a classifier may be used

to indicate the type of the variable (string, integer, etc.), and the definition describes the

variable’s use in the program. This usage of definition lists supports the classifier syntax of

Grouch, a system for describing and enforcing a Python object schema.

Syntax diagram:

+----------------------------+

| term [ " : " classifier ]* |

http://www.mems-exchange.org/software/grouch/


第 2章 Syntax Details 16

+--+-------------------------+--+

| definition |

| (body elements)+ |

+----------------------------+

2.5.5 Field Lists

Doctree elements: field list, field, field name, field body.

Field lists are used as part of an extension syntax, such as options for directives, or database-like

records meant for further processing. They may also be used for two-column table-like structures

resembling database records (label & data pairs). Applications of reStructuredText may recognize

field names and transform fields or field bodies in certain contexts. For examples, see Bibliographic

Fields below, or the “image” and “meta” directives in reStructuredText Directives.

Field lists are mappings from field names to field bodies, modeled on RFC822 headers. A field

name is made up of one or more letters, numbers, whitespace, and punctuation, except colons (“:”).

Inline markup is parsed in field names. Field names are case-insensitive when further processed or

transformed. The field name, along with a single colon prefix and suffix, together form the field

marker. The field marker is followed by whitespace and the field body. The field body may contain

multiple body elements, indented relative to the field marker. The first line after the field name

marker determines the indentation of the field body. For example:

:Date: 2001-08-16

:Version: 1

:Authors: - Me

- Myself

- I

:Indentation: Since the field marker may be quite long, the second

and subsequent lines of the field body do not have to line up

with the first line, but they must be indented relative to the

field name marker, and they must line up with each other.

:Parameter i: integer

The interpretation of individual words in a multi-word field name is up to the application. The

application may specify a syntax for the field name. For example, second and subsequent words may

be treated as “arguments”, quoted phrases may be treated as a single argument, and direct support

for the “name=value” syntax may be added.

Standard RFC822 headers cannot be used for this construct because they are ambiguous. A word

followed by a colon at the beginning of a line is common in written text. However, in well-defined

contexts such as when a field list invariably occurs at the beginning of a document (PEPs and email

messages), standard RFC822 headers could be used.

file:directives.html#image
file:directives.html#meta
file:directives.html
http://www.rfc-editor.org/rfc/rfc822.txt
http://www.rfc-editor.org/rfc/rfc822.txt


第 2章 Syntax Details 17

Syntax diagram (simplified):

+--------------------+----------------------+

| ":" field name ":" | field body |

+-------+------------+ |

| (body elements)+ |

+-----------------------------------+

2.5.6 Bibliographic Fields

Doctree elements: docinfo, author, authors, organization, contact, version, status, date, copyright,

field, topic.

When a field list is the first non-comment element in a document (after the document title, if there

is one), it may have its fields transformed to document bibliographic data. This bibliographic data

corresponds to the front matter of a book, such as the title page and copyright page.

Certain registered field names (listed below) are recognized and transformed to the corresponding

doctree elements, most becoming child elements of the “docinfo” element. No ordering is required

of these fields, although they may be rearranged to fit the document structure, as noted. Unless

otherwise indicated below, each of the bibliographic elements’ field bodies may contain a single

paragraph only. Field bodies may be checked for RCS keywords and cleaned up. Any unrecognized

fields will remain as generic fields in the docinfo element.

The registered bibliographic field names and their corresponding doctree elements are as follows:

• Field name “Author”: author element.

• “Authors”: authors.

• “Organization”: organization.

• “Contact”: contact.

• “Address”: address.

• “Version”: version.

• “Status”: status.

• “Date”: date.

• “Copyright”: copyright.

• “Dedication”: topic.

• “Abstract”: topic.

The “Authors” field may contain either: a single paragraph consisting of a list of authors, separated

by “;” or “,”; or a bullet list whose elements each contain a single paragraph per author. “;” is

checked first, so “Doe, Jane; Doe, John” will work. In some languages (e.g. Swedish), there is no

singular/plural distinction between “Author” and “Authors”, so only an “Authors” field is provided,

and a single name is interpreted as an “Author”. If a single name contains a comma, end it with a

semicolon to disambiguate: “:Authors: Doe, Jane;”.



第 2章 Syntax Details 18

The “Address” field is for a multi-line surface mailing address. Newlines and whitespace will be

preserved.

The “Dedication” and “Abstract” fields may contain arbitrary body elements. Only one of each

is allowed. They become topic elements with “Dedication” or “Abstract” titles (or language equiv-

alents) immediately following the docinfo element.

This field-name-to-element mapping can be replaced for other languages. See the DocInfo trans-

form implementation documentation for details.

Unregistered/generic fields may contain one or more paragraphs or arbitrary body elements.

2.5.7 RCS Keywords

Bibliographic fields recognized by the parser are normally checked for RCS*2 keywords and cleaned

up*3. RCS keywords may be entered into source files as “$keyword$”, and once stored under RCS

or CVS*4, they are expanded to “$keyword: expansion text $”. For example, a “Status” field will

be transformed to a “status” element:

:Status: \$keyword: expansion text \$

Processed, the “status” element’s text will become simply “expansion text”. The dollar sign

delimiters and leading RCS keyword name are removed.

The RCS keyword processing only kicks in when both of these conditions hold:

1. The field list is in bibliographic context (first non-comment construct in the document,

after a document title if there is one).

2. The field name is a recognized bibliographic field name.

2.5.8 Option Lists

Doctree elements: option list, option list item, option group, option, option string, op-

tion argument, description.

Option lists are two-column lists of command-line options and descriptions, documenting a pro-

gram’s options. For example:

-a Output all.

-b Output both (this description is

quite long).

-c arg Output just arg.

--long Output all day long.

*2 Revision Control System.
*3 RCS keyword processing can be turned off (unimplemented).
*4 Concurrent Versions System. CVS uses the same keywords as RCS.

http://docutils.sourceforge.net/docutils/transforms/frontmatter.py
http://docutils.sourceforge.net/docutils/transforms/frontmatter.py


第 2章 Syntax Details 19

-p This option has two paragraphs in the description.

This is the first.

This is the second. Blank lines may be omitted between

options (as above) or left in (as here and below).

--very-long-option A VMS-style option. Note the adjustment for

the required two spaces.

--an-even-longer-option

The description can also start on the next line.

-2, --two This option has two variants.

-f FILE, --file=FILE These two options are synonyms; both have

arguments.

/V A VMS/DOS-style option.

There are several types of options recognized by reStructuredText:

• Short POSIX options consist of one dash and an option letter.

• Long POSIX options consist of two dashes and an option word; some systems use a single

dash.

• Old GNU-style “plus” options consist of one plus and an option letter (“plus” options are

deprecated now, their use discouraged).

• DOS/VMS options consist of a slash and an option letter or word.

Please note that both POSIX-style and DOS/VMS-style options may be used by DOS or Windows

software. These and other variations are sometimes used mixed together. The names above have

been chosen for convenience only.

The syntax for short and long POSIX options is based on the syntax supported by Python’s

getopt.py module, which implements an option parser similar to the GNU libc getopt long() function

but with some restrictions. There are many variant option systems, and reStructuredText option

lists do not support all of them.

Although long POSIX and DOS/VMS option words may be allowed to be truncated by the op-

erating system or the application when used on the command line, reStructuredText option lists

do not show or support this with any special syntax. The complete option word should be given,

supported by notes about truncation if and when applicable.

Options may be followed by an argument placeholder, whose role and syntax should be explained

in the description text. Either a space or an equals sign may be used as a delimiter between options

http://www.python.org/doc/current/lib/module-getopt.html
http://www.gnu.org/software/libc/manual/html_node/Getopt-Long-Options.html


第 2章 Syntax Details 20

and option argument placeholders; short options (“-” or “+” prefix only) may omit the delimiter.

Option arguments may take one of two forms:

• Begins with a letter ([a-zA-Z]) and subsequently consists of letters, numbers, underscores

and hyphens ([a-zA-Z0-9 -]).

• Begins with an open-angle-bracket (<) and ends with a close-angle-bracket (>); any characters

except angle brackets are allowed internally.

Multiple option “synonyms” may be listed, sharing a single description. They must be separated by

comma-space.

There must be at least two spaces between the option(s) and the description. The description may

contain multiple body elements. The first line after the option marker determines the indentation

of the description. As with other types of lists, blank lines are required before the first option list

item and after the last, but are optional between option entries.

Syntax diagram (simplified):

+----------------------------+-------------+

| option [" " argument] " " | description |

+-------+--------------------+ |

| (body elements)+ |

+----------------------------------+

2.5.9 Literal Blocks

Doctree element: literal block.

A paragraph consisting of two colons (“::”) signifies that the following text block(s) comprise a

literal block. The literal block must either be indented or quoted (see below). No markup processing

is done within a literal block. It is left as-is, and is typically rendered in a monospaced typeface:

This is a typical paragraph. An indented literal block follows.

::

for a in [5,4,3,2,1]: # this is program code, shown as-is

print a

print "it’s..."

# a literal block continues until the indentation ends

This text has returned to the indentation of the first paragraph,

is outside of the literal block, and is therefore treated as an

ordinary paragraph.



第 2章 Syntax Details 21

The paragraph containing only “::” will be completely removed from the output; no empty paragraph

will remain.

As a convenience, the “::” is recognized at the end of any paragraph. If immediately preceded by

whitespace, both colons will be removed from the output (this is the “partially minimized” form).

When text immediately precedes the “::”, one colon will be removed from the output, leaving only

one colon visible (i.e., “::” will be replaced by “:”; this is the “fully minimized” form).

In other words, these are all equivalent (please pay attention to the colons after “Paragraph”):

1. Expanded form:

Paragraph:

::

Literal block

2. Partially minimized form:

Paragraph: ::

Literal block

3. Fully minimized form:

Paragraph::

Literal block

All whitespace (including line breaks, but excluding minimum indentation for indented literal

blocks) is preserved. Blank lines are required before and after a literal block, but these blank lines

are not included as part of the literal block.

2.5.10 Indented Literal Blocks

Indented literal blocks are indicated by indentation relative to the surrounding text (leading whites-

pace on each line). The minimum indentation will be removed from each line of an indented literal

block. The literal block need not be contiguous; blank lines are allowed between sections of indented

text. The literal block ends with the end of the indentation.

Syntax diagram:

+------------------------------+

| paragraph |

| (ends with "::") |

+------------------------------+

+---------------------------+

| indented literal block |



第 2章 Syntax Details 22

+---------------------------+

2.5.11 Quoted Literal Blocks

Quoted literal blocks are unindented contiguous blocks of text where each line begins with the

same non-alphanumeric printable 7-bit ASCII character*5. A blank line ends a quoted literal block.

The quoting characters are preserved in the processed document.

Possible uses include literate programming in Haskell and email quoting:

John Doe wrote::

>> Great idea!

>

> Why didn’t I think of that?

You just did! ;-)

Syntax diagram:

+------------------------------+

| paragraph |

| (ends with "::") |

+------------------------------+

+------------------------------+

| ">" per-line-quoted |

| ">" contiguous literal block |

+------------------------------+

2.5.12 Line Blocks

Doctree elements: line block, line. New in Docutils 0.3.5.

Line blocks are useful for address blocks, verse (poetry, song lyrics), and unadorned lists, where

the structure of lines is significant. Line blocks are groups of lines beginning with vertical bar (“|”)

prefixes. Each vertical bar prefix indicates a new line, so line breaks are preserved. Initial indents

are also significant, resulting in a nested structure. Inline markup is supported. Continuation lines

are wrapped portions of long lines; they begin with a space in place of the vertical bar. The left

edge of a continuation line must be indented, but need not be aligned with the left edge of the text

above it. A line block ends with a blank line.

*5 The following are all valid quoting characters:

! " # \$ % & ’ ( ) * + , - . / : ; < = > ? @ [ \ ] ^ ‘ { | } ~

Note that these are the same characters as are valid for title adornment of sections.



第 2章 Syntax Details 23

This example illustrates continuation lines:

| Lend us a couple of bob till Thursday.

| I’m absolutely skint.

| But I’m expecting a postal order and I can pay you back

as soon as it comes.

| Love, Ewan.

This example illustrates the nesting of line blocks, indicated by the initial indentation of new lines:

Take it away, Eric the Orchestra Leader!

| A one, two, a one two three four

|

| Half a bee, philosophically,

| must, *ipso facto*, half not be.

| But half the bee has got to be,

| *vis a vis* its entity. D’you see?

|

| But can a bee be said to be

| or not to be an entire bee,

| when half the bee is not a bee,

| due to some ancient injury?

|

| Singing...

Syntax diagram:

+------+-----------------------+

| "| " | line |

+------| continuation line |

+-----------------------+

2.5.13 Block Quotes

Doctree element: block quote, attribution.

A text block that is indented relative to the preceding text, without markup indicating it to be

a literal block, is a block quote. All markup processing (for body elements and inline markup)

continues within the block quote:

This is an ordinary paragraph, introducing a block quote.



第 2章 Syntax Details 24

"It is my business to know things. That is my trade."

-- Sherlock Holmes

If the final block of a block quote begins with “--”, “---”, or a true em-dash (flush left within the

block quote), it is interpreted as an attribution. If the attribution consists of multiple lines, the left

edges of the second and subsequent lines must align.

Blank lines are required before and after a block quote, but these blank lines are not included as

part of the block quote.

Syntax diagram:

+------------------------------+

| (current level of |

| indentation) |

+------------------------------+

+---------------------------+

| block quote |

| (body elements)+ |

| |

| -- attribution text |

| (optional) |

+---------------------------+

2.5.14 Doctest Blocks

Doctree element: doctest block.

Doctest blocks are interactive Python sessions cut-and-pasted into docstrings. They are meant to

illustrate usage by example, and provide an elegant and powerful testing environment via the doctest

module in the Python standard library.

Doctest blocks are text blocks which begin with ">>> ", the Python interactive interpreter main

prompt, and end with a blank line. Doctest blocks are treated as a special case of literal blocks,

without requiring the literal block syntax. If both are present, the literal block syntax takes priority

over Doctest block syntax:

This is an ordinary paragraph.

>>> print ’this is a Doctest block’

this is a Doctest block

The following is a literal block::

http://www.python.org/doc/current/lib/module-doctest.html
http://www.python.org/doc/current/lib/module-doctest.html


第 2章 Syntax Details 25

>>> This is not recognized as a doctest block by

reStructuredText. It *will* be recognized by the doctest

module, though!

Indentation is not required for doctest blocks.

2.5.15 Tables

Doctree elements: table, tgroup, colspec, thead, tbody, row, entry.

ReStructuredText provides two syntaxes for delineating table cells: Grid Tables and Simple Tables.

As with other body elements, blank lines are required before and after tables. Tables’ left edges

should align with the left edge of preceding text blocks; if indented, the table is considered to be

part of a block quote.

Once isolated, each table cell is treated as a miniature document; the top and bottom cell bound-

aries act as delimiting blank lines. Each cell contains zero or more body elements. Cell contents

may include left and/or right margins, which are removed before processing.

2.5.16 Grid Tables

Grid tables provide a complete table representation via grid-like “ASCII art”. Grid tables allow

arbitrary cell contents (body elements), and both row and column spans. However, grid tables can be

cumbersome to produce, especially for simple data sets. The Emacs table mode is a tool that allows

easy editing of grid tables, in Emacs. See Simple Tables for a simpler (but limited) representation.

Grid tables are described with a visual grid made up of the characters “-”, “=”, “|”, and “+”.

The hyphen (“-”) is used for horizontal lines (row separators). The equals sign (“=”) may be used

to separate optional header rows from the table body (not supported by the Emacs table mode).

The vertical bar (“|”) is used for vertical lines (column separators). The plus sign (“+”) is used for

intersections of horizontal and vertical lines. Example:

+------------------------+------------+----------+----------+

| Header row, column 1 | Header 2 | Header 3 | Header 4 |

| (header rows optional) | | | |

+========================+============+==========+==========+

| body row 1, column 1 | column 2 | column 3 | column 4 |

+------------------------+------------+----------+----------+

| body row 2 | Cells may span columns. |

+------------------------+------------+---------------------+

| body row 3 | Cells may | - Table cells |

+------------------------+ span rows. | - contain |

| body row 4 | | - body elements. |

+------------------------+------------+---------------------+

http://table.sourceforge.net/
http://table.sourceforge.net/


第 2章 Syntax Details 26

Some care must be taken with grid tables to avoid undesired interactions with cell text in rare cases.

For example, the following table contains a cell in row 2 spanning from column 2 to column 4:

+--------------+----------+-----------+-----------+

| row 1, col 1 | column 2 | column 3 | column 4 |

+--------------+----------+-----------+-----------+

| row 2 | |

+--------------+----------+-----------+-----------+

| row 3 | | | |

+--------------+----------+-----------+-----------+

If a vertical bar is used in the text of that cell, it could have unintended effects if accidentally aligned

with column boundaries:

+--------------+----------+-----------+-----------+

| row 1, col 1 | column 2 | column 3 | column 4 |

+--------------+----------+-----------+-----------+

| row 2 | Use the command ‘‘ls | more‘‘. |

+--------------+----------+-----------+-----------+

| row 3 | | | |

+--------------+----------+-----------+-----------+

Several solutions are possible. All that is needed is to break the continuity of the cell outline

rectangle. One possibility is to shift the text by adding an extra space before:

+--------------+----------+-----------+-----------+

| row 1, col 1 | column 2 | column 3 | column 4 |

+--------------+----------+-----------+-----------+

| row 2 | Use the command ‘‘ls | more‘‘. |

+--------------+----------+-----------+-----------+

| row 3 | | | |

+--------------+----------+-----------+-----------+

Another possibility is to add an extra line to row 2:

+--------------+----------+-----------+-----------+

| row 1, col 1 | column 2 | column 3 | column 4 |

+--------------+----------+-----------+-----------+

| row 2 | Use the command ‘‘ls | more‘‘. |

| | |

+--------------+----------+-----------+-----------+

| row 3 | | | |

+--------------+----------+-----------+-----------+



第 2章 Syntax Details 27

2.5.17 Simple Tables

Simple tables provide a compact and easy to type but limited row-oriented table representation

for simple data sets. Cell contents are typically single paragraphs, although arbitrary body elements

may be represented in most cells. Simple tables allow multi-line rows (in all but the first column)

and column spans, but not row spans. See Grid Tables above for a complete table representation.

Simple tables are described with horizontal borders made up of “=” and “-” characters. The equals

sign (“=”) is used for top and bottom table borders, and to separate optional header rows from the

table body. The hyphen (“-”) is used to indicate column spans in a single row by underlining the

joined columns.

A simple table begins with a top border of equals signs with one or more spaces at each column

boundary (two or more spaces recommended). Regardless of spans, the top border must fully describe

all table columns. There must be at least two columns in the table (to differentiate it from section

headers). The last of the optional header rows is underlined with ’=’, again with spaces at column

boundaries. There may not be a blank line below the header row separator; it would be interpreted

as the bottom border of the table. The bottom boundary of the table consists of ’=’ underlines, also

with spaces at column boundaries. For example, here is a truth table, a three-column table with one

header row and four body rows:

===== ===== =======

A B A and B

===== ===== =======

False False False

True False False

False True False

True True True

===== ===== =======

Underlines of ’-’ may be used to indicate column spans by “filling in” column margins to join adjacent

columns. Column span underlines must be complete (they must cover all columns) and align with

established column boundaries. Text lines containing column span underlines may not contain any

other text. A column span underline applies only to one row immediately above it. For example,

here is a table with a column span in the header:

===== ===== ======

Inputs Output

------------ ------

A B A or B

===== ===== ======

False False False



第 2章 Syntax Details 28

True False True

False True True

True True True

===== ===== ======

Each line of text must contain spaces at column boundaries, except where cells have been joined

by column spans. Each line of text starts a new row, except when there is a blank cell in the first

column. In that case, that line of text is parsed as a continuation line. For this reason, cells in the

first column of new rows (not continuation lines) must contain some text; blank cells would lead to

a misinterpretation. An empty comment (“..”) is sufficient and will be omitted from the processed

output (see Comments below). Also, this mechanism limits cells in the first column to only one line

of text. Use grid tables if this limitation is unacceptable.

Underlines of ’-’ may also be used to visually separate rows, even if there are no column spans.

This is especially useful in long tables, where rows are many lines long.

Blank lines are permitted within simple tables. Their interpretation depends on the context. Blank

lines between rows are ignored. Blank lines within multi-line rows may separate paragraphs or other

body elements within cells.

The rightmost column is unbounded; text may continue past the edge of the table (as indicated

by the table borders). However, it is recommended that borders be made long enough to contain

the entire text.

The following example illustrates continuation lines (row 2 consists of two lines of text, and four

lines for row 3), a blank line separating paragraphs (row 3, column 2), and text extending past the

right edge of the table:

===== =====

col 1 col 2

===== =====

1 Second column of row 1.

2 Second column of row 2.

Second line of paragraph.

3 - Second column of row 3.

- Second item in bullet

list (row 3, column 2).

===== =====

2.5.18 Explicit Markup Blocks

An explicit markup block is a text block:

• whose first line begins with “..” followed by whitespace (the “explicit markup start”),



第 2章 Syntax Details 29

• whose second and subsequent lines (if any) are indented relative to the first, and

• which ends before an unindented line.

Explicit markup blocks are analogous to bullet list items, with “..” as the bullet. The text on the

lines immediately after the explicit markup start determines the indentation of the block body. The

maximum common indentation is always removed from the second and subsequent lines of the block

body. Therefore if the first construct fits in one line, and the indentation of the first and second

constructs should differ, the first construct should not begin on the same line as the explicit markup

start.

Blank lines are required between explicit markup blocks and other elements, but are optional

between explicit markup blocks where unambiguous.

The explicit markup syntax is used for footnotes, citations, hyperlink targets, directives, substitu-

tion definitions, and comments.

2.5.19 Footnotes

Doctree elements: footnote, label.

Each footnote consists of an explicit markup start (“.. ”), a left square bracket, the footnote label,

a right square bracket, and whitespace, followed by indented body elements. A footnote label can

be:

• a whole decimal number consisting of one or more digits,

• a single “#” (denoting auto-numbered footnotes),

• a “#” followed by a simple reference name (an autonumber label), or

• a single “*” (denoting auto-symbol footnotes).

The footnote content (body elements) must be consistently indented (by at least 3 spaces) and left-

aligned. The first body element within a footnote may often begin on the same line as the footnote

label. However, if the first element fits on one line and the indentation of the remaining elements

differ, the first element must begin on the line after the footnote label. Otherwise, the difference in

indentation will not be detected.

Footnotes may occur anywhere in the document, not only at the end. Where and how they appear

in the processed output depends on the processing system.

Here is a manually numbered footnote:

.. [1] Body elements go here.

Each footnote automatically generates a hyperlink target pointing to itself. The text of the hyperlink

target name is the same as that of the footnote label. Auto-numbered footnotes generate a number

as their footnote label and reference name. See Implicit Hyperlink Targets for a complete description

of the mechanism.

Syntax diagram:



第 2章 Syntax Details 30

+-------+-------------------------+

| ".. " | "[" label "]" footnote |

+-------+ |

| (body elements)+ |

+-------------------------+

2.5.20 Auto-Numbered Footnotes

A number sign (“#”) may be used as the first character of a footnote label to request automatic

numbering of the footnote or footnote reference.

The first footnote to request automatic numbering is assigned the label “1”, the second is assigned

the label “2”, and so on (assuming there are no manually numbered footnotes present; see Mixed

Manual and Auto-Numbered Footnotes below). A footnote which has automatically received a label

“1” generates an implicit hyperlink target with name “1”, just as if the label was explicitly specified.

A footnote may specify a label explicitly while at the same time requesting automatic numbering:

[#label]. These labels are called autonumber labels. Autonumber labels do two things:

• On the footnote itself, they generate a hyperlink target whose name is the autonumber label

(doesn’t include the “#”).

• They allow an automatically numbered footnote to be referred to more than once, as a footnote

reference or hyperlink reference. For example:

If [#note] is the first footnote reference, it will show up as

"[1]". We can refer to it again as [#note] and again see

"[1]". We can also refer to it as note (an ordinary internal

hyperlink reference).

.. [#note] This is the footnote labeled "note".

The numbering is determined by the order of the footnotes, not by the order of the references. For

footnote references without autonumber labels ([#] ), the footnotes and footnote references must

be in the same relative order but need not alternate in lock-step. For example:

[#] is a reference to footnote 1, and [#] is a reference to

footnote 2.

.. [#] This is footnote 1.

.. [#] This is footnote 2.

.. [#] This is footnote 3.

[#] is a reference to footnote 3.



第 2章 Syntax Details 31

Special care must be taken if footnotes themselves contain auto-numbered footnote references, or if

multiple references are made in close proximity. Footnotes and references are noted in the order they

are encountered in the document, which is not necessarily the same as the order in which a person

would read them.

2.5.21 Auto-Symbol Footnotes

An asterisk (“*”) may be used for footnote labels to request automatic symbol generation for

footnotes and footnote references. The asterisk may be the only character in the label. For example:

Here is a symbolic footnote reference: [*] .

.. [*] This is the footnote.

A transform will insert symbols as labels into corresponding footnotes and footnote references. The

number of references must be equal to the number of footnotes. One symbol footnote cannot have

multiple references.

The standard Docutils system uses the following symbols for footnote marks*6:

• asterisk/star (“*”)

• dagger (HTML character entity “&dagger;”, Unicode U+02020)

• double dagger (“&Dagger;”/U+02021)

• section mark (“&sect;”/U+000A7)

• pilcrow or paragraph mark (“&para;”/U+000B6)

• number sign (“#”)

• spade suit (“&spades;”/U+02660)

• heart suit (“&hearts;”/U+02665)

• diamond suit (“&diams;”/U+02666)

• club suit (“&clubs;”/U+02663)

If more than ten symbols are required, the same sequence will be reused, doubled and then tripled,

and so on (“**” etc.).

Note

When using auto-symbol footnotes, the choice of output encoding is important. Many of the

symbols used are not encodable in certain common text encodings such as Latin-1 (ISO 8859-

1). The use of UTF-8 for the output encoding is recommended. An alternative for HTML and

XML output is to use the “xmlcharrefreplace” output encoding error handler.

*6 This list was inspired by the list of symbols for “Note Reference Marks” in The Chicago Manual of Style, 14th

edition, section 12.51. “Parallels” (“||”) were given in CMoS instead of the pilcrow. The last four symbols (the

card suits) were added arbitrarily.

file:../../user/config.html#output-encoding-error-handler


第 2章 Syntax Details 32

2.5.22 Mixed Manual and Auto-Numbered Footnotes

Manual and automatic footnote numbering may both be used within a single document, although

the results may not be expected. Manual numbering takes priority. Only unused footnote numbers

are assigned to auto-numbered footnotes. The following example should be illustrative:

[2] will be "2" (manually numbered),

[#] will be "3" (anonymous auto-numbered), and

[#label] will be "1" (labeled auto-numbered).

.. [2] This footnote is labeled manually, so its number is fixed.

.. [#label] This autonumber-labeled footnote will be labeled "1".

It is the first auto-numbered footnote and no other footnote

with label "1" exists. The order of the footnotes is used to

determine numbering, not the order of the footnote references.

.. [#] This footnote will be labeled "3". It is the second

auto-numbered footnote, but footnote label "2" is already used.

2.5.23 Citations

Citations are identical to footnotes except that they use only non-numeric labels such as [note]

or [GVR2001]. Citation labels are simple reference names (case-insensitive single words consisting of

alphanumerics plus internal hyphens, underscores, and periods; no whitespace). Citations may be

rendered separately and differently from footnotes. For example:

Here is a citation reference: [CIT2002] .

.. [CIT2002] This is the citation. It’s just like a footnote,

except the label is textual.

2.5.24 Hyperlink Targets

Doctree element: target.

These are also called explicit hyperlink targets, to differentiate them from implicit hyperlink targets

defined below.

Hyperlink targets identify a location within or outside of a document, which may be linked to by

hyperlink references.

Hyperlink targets may be named or anonymous. Named hyperlink targets consist of an explicit



第 2章 Syntax Details 33

markup start (“.. ”), an underscore, the reference name (no trailing underscore), a colon, whitespace,

and a link block:

.. hyperlink-name: link-block

Reference names are whitespace-neutral and case-insensitive. See Reference Names for details and

examples.

Anonymous hyperlink targets consist of an explicit markup start (“.. ”), two underscores, a colon,

whitespace, and a link block; there is no reference name:

.. : anonymous-hyperlink-target-link-block

An alternate syntax for anonymous hyperlinks consists of two underscores, a space, and a link block:

anonymous-hyperlink-target-link-block

See Anonymous Hyperlinks below.

There are three types of hyperlink targets: internal, external, and indirect.

1. Internal hyperlink targets have empty link blocks. They provide an end point allowing

a hyperlink to connect one place to another within a document. An internal hyperlink

target points to the element following the target. For example:

Clicking on this internal hyperlink will take us to the target

below.

.. target:

The hyperlink target above points to this paragraph.

Internal hyperlink targets may be “chained”. Multiple adjacent internal hyperlink tar-

gets all point to the same element:

.. target1:

.. target2:

The targets "target1" and "target2" are synonyms; they both

point to this paragraph.

If the element “pointed to” is an external hyperlink target (with a URI in its link block;

see #2 below) the URI from the external hyperlink target is propagated to the internal

hyperlink targets; they will all “point to” the same URI. There is no need to duplicate

a URI. For example, all three of the following hyperlink targets refer to the same URI:

.. Python DOC-SIG mailing list archive:

.. archive:

.. Doc-SIG: http://mail.python.org/pipermail/doc-sig/

An inline form of internal hyperlink target is available; see Inline Internal Targets.



第 2章 Syntax Details 34

2. External hyperlink targets have an absolute or relative URI or email address in their

link blocks. For example, take the following input:

See the Python home page for info.

‘Write to me‘ with your questions.

.. Python: http://www.python.org

.. Write to me: jdoe@example.com

After processing into HTML, the hyperlinks might be expressed as:

See the <a href="http://www.python.org">Python</a> home page

for info.

<a href="mailto:jdoe@example.com">Write to me</a> with your

questions.

An external hyperlink’s URI may begin on the same line as the explicit markup start

and target name, or it may begin in an indented text block immediately following,

with no intervening blank lines. If there are multiple lines in the link block, they are

concatenated. Any whitespace is removed (whitespace is permitted to allow for line

wrapping). The following external hyperlink targets are equivalent:

.. one-liner: http://docutils.sourceforge.net/rst.html

.. starts-on-this-line: http://

docutils.sourceforge.net/rst.html

.. entirely-below:

http://docutils.

sourceforge.net/rst.html

If an external hyperlink target’s URI contains an underscore as its last character, it

must be escaped to avoid being mistaken for an indirect hyperlink target:

This link refers to a file called ‘‘underscore ‘‘.

.. link: underscore\
It is possible (although not generally recommended) to include URIs directly within

hyperlink references. See Embedded URIs below.

3. Indirect hyperlink targets have a hyperlink reference in their link blocks. In the following

example, target “one” indirectly references whatever target “two” references, and target

“two” references target “three”, an internal hyperlink target. In effect, all three reference

the same thing:

.. one: two

.. two: three



第 2章 Syntax Details 35

.. three:

Just as with hyperlink references anywhere else in a document, if a phrase-reference is

used in the link block it must be enclosed in backquotes. As with external hyperlink

targets, the link block of an indirect hyperlink target may begin on the same line as the

explicit markup start or the next line. It may also be split over multiple lines, in which

case the lines are joined with whitespace before being normalized.

For example, the following indirect hyperlink targets are equivalent:

.. one-liner: ‘A HYPERLINK‘

.. entirely-below:

‘a hyperlink‘

.. split: ‘A

Hyperlink‘

If a reference name contains a colon followed by whitespace, either:

• the phrase must be enclosed in backquotes:

.. ‘FAQTS: Computers: Programming: Languages: Python‘:

http://python.faqts.com/

• or the colon(s) must be backslash-escaped in the link target:

.. Chapter One\: "Tadpole Days":

It’s not easy being green...

See Implicit Hyperlink Targets below for the resolution of duplicate reference names.

Syntax diagram:

+-------+----------------------+

| ".. " | " " name ":" link |

+-------+ block |

| |

+----------------------+

2.5.25 Anonymous Hyperlinks

The World Wide Web Consortium recommends in its HTML Techniques for Web Content Accessi-

bility Guidelines that authors should “clearly identify the target of each link.” Hyperlink references

should be as verbose as possible, but duplicating a verbose hyperlink name in the target is onerous

and error-prone. Anonymous hyperlinks are designed to allow convenient verbose hyperlink refer-

ences, and are analogous to Auto-Numbered Footnotes. They are particularly useful in short or

one-off documents. However, this feature is easily abused and can result in unreadable plaintext

and/or unmaintainable documents. Caution is advised.

http://www.w3.org/
http://www.w3.org/TR/WCAG10-HTML-TECHS/#link-text
http://www.w3.org/TR/WCAG10-HTML-TECHS/#link-text


第 2章 Syntax Details 36

Anonymous hyperlink references are specified with two underscores instead of one:

See ‘the web site of my favorite programming language‘ .

Anonymous targets begin with “.. :”; no reference name is required or allowed:

.. : http://www.python.org

As a convenient alternative, anonymous targets may begin with “ ” only:

http://www.python.org

The reference name of the reference is not used to match the reference to its target. Instead, the

order of anonymous hyperlink references and targets within the document is significant: the first

anonymous reference will link to the first anonymous target. The number of anonymous hyperlink

references in a document must match the number of anonymous targets. For readability, it is

recommended that targets be kept close to references. Take care when editing text containing

anonymous references; adding, removing, and rearranging references require attention to the order

of corresponding targets.

2.5.26 Directives

Doctree elements: depend on the directive.

Directives are an extension mechanism for reStructuredText, a way of adding support for new

constructs without adding new primary syntax (directives may support additional syntax locally).

All standard directives (those implemented and registered in the reference reStructuredText parser)

are described in the reStructuredText Directives document, and are always available. Any other

directives are domain-specific, and may require special action to make them available when processing

the document.

For example, here’s how an image may be placed:

.. image:: mylogo.jpeg

A figure (a graphic with a caption) may placed like this:

.. figure:: larch.png

The larch.

An admonition (note, caution, etc.) contains other body elements:

.. note:: This is a paragraph

- Here is a bullet list.

Directives are indicated by an explicit markup start (“.. ”) followed by the directive type, two

file:directives.html
file:directives.html#image
file:directives.html#figure
file:directives.html#admonitions


第 2章 Syntax Details 37

colons, and whitespace (together called the “directive marker”). Directive types are case-insensitive

single words (alphanumerics plus internal hyphens, underscores, and periods; no whitespace). Two

colons are used after the directive type for these reasons:

• Two colons are distinctive, and unlikely to be used in common text.

• Two colons avoids clashes with common comment text like:

.. Danger: modify at your own risk!

• If an implementation of reStructuredText does not recognize a directive (i.e., the directive-

handler is not installed), a level-3 (error) system message is generated, and the entire directive

block (including the directive itself) will be included as a literal block. Thus “::” is a natural

choice.

The directive block is consists of any text on the first line of the directive after the directive marker,

and any subsequent indented text. The interpretation of the directive block is up to the directive

code. There are three logical parts to the directive block:

1. Directive arguments.

2. Directive options.

3. Directive content.

Individual directives can employ any combination of these parts. Directive arguments can be

filesystem paths, URLs, title text, etc. Directive options are indicated using field lists; the field

names and contents are directive-specific. Arguments and options must form a contiguous block

beginning on the first or second line of the directive; a blank line indicates the beginning of the

directive content block. If either arguments and/or options are employed by the directive, a blank

line must separate them from the directive content. The “figure” directive employs all three parts:

.. figure:: larch.png

:scale: 50

The larch.

Simple directives may not require any content. If a directive that does not employ a content block

is followed by indented text anyway, it is an error. If a block quote should immediately follow a

directive, use an empty comment in-between (see Comments below).

Actions taken in response to directives and the interpretation of text in the directive content block

or subsequent text block(s) are directive-dependent. See reStructuredText Directives for details.

Directives are meant for the arbitrary processing of their contents, which can be transformed into

something possibly unrelated to the original text. It may also be possible for directives to be used as

pragmas, to modify the behavior of the parser, such as to experiment with alternate syntax. There

is no parser support for this functionality at present; if a reasonable need for pragma directives is

found, they may be supported.

Directives do not generate “directive” elements; they are a parser construct only, and have no

file:directives.html


第 2章 Syntax Details 38

intrinsic meaning outside of reStructuredText. Instead, the parser will transform recognized direc-

tives into (possibly specialized) document elements. Unknown directives will trigger level-3 (error)

system messages.

Syntax diagram:

+-------+-------------------------------+

| ".. " | directive type "::" directive |

+-------+ block |

| |

+-------------------------------+

2.5.27 Substitution Definitions

Doctree element: substitution definition.

Substitution definitions are indicated by an explicit markup start (“.. ”) followed by a vertical

bar, the substitution text, another vertical bar, whitespace, and the definition block. Substitution

text may not begin or end with whitespace. A substitution definition block contains an embedded

inline-compatible directive (without the leading “.. ”), such as an image. For example:

The |biohazard| symbol must be used on containers used to

dispose of medical waste.

.. |biohazard| image:: biohazard.png

It is an error for a substitution definition block to directly or indirectly contain a circular substitution

reference.

Substitution references are replaced in-line by the processed contents of the corresponding defi-

nition (linked by matching substitution text). Matches are case-sensitive but forgiving; if no exact

match is found, a case-insensitive comparison is attempted.

Substitution definitions allow the power and flexibility of block-level directives to be shared by

inline text. They are a way to include arbitrarily complex inline structures within text, while

keeping the details out of the flow of text. They are the equivalent of SGML/XML’s named entities

or programming language macros.

Without the substitution mechanism, every time someone wants an application-specific new inline

structure, they would have to petition for a syntax change. In combination with existing directive

syntax, any inline structure can be coded without new syntax (except possibly a new directive).

Syntax diagram:

+-------+-----------------------------------------------------+

| ".. " | "|" substitution text "| " directive type "::" data |

+-------+ directive block |

file:directives.html#image


第 2章 Syntax Details 39

| |

+-----------------------------------------------------+

Following are some use cases for the substitution mechanism. Please note that most of the embedded

directives shown are examples only and have not been implemented.

Objects Substitution references may be used to associate ambiguous text with a unique object

identifier.

For example, many sites may wish to implement an inline “user” directive:

|Michael| and |Jon| are our widget-wranglers.

.. |Michael| user:: mjones

.. |Jon| user:: jhl

Depending on the needs of the site, this may be used to index the document for later search-

ing, to hyperlink the inline text in various ways (mailto, homepage, mouseover Javascript

with profile and contact information, etc.), or to customize presentation of the text (include

username in the inline text, include an icon image with a link next to the text, make the text

bold or a different color, etc.).

The same approach can be used in documents which frequently refer to a particular type of

objects with unique identifiers but ambiguous common names. Movies, albums, books, photos,

court cases, and laws are possible. For example:

|The Transparent Society| offers a fascinating alternate view

on privacy issues.

.. |The Transparent Society| book:: isbn=0738201448

Classes or functions, in contexts where the module or class names are unclear and/or inter-

preted text cannot be used, are another possibility:

4XSLT has the convenience method |runString|, so you don’t

have to mess with DOM objects if all you want is the

transformed output.

.. |runString| function:: module=xml.xslt class=Processor

Images are a common use for substitution references:

Images West led the |H| 3, covered by dummy’s |H| Q, East’s |H| K,

and trumped in hand with the |S| 2.

.. |H| image:: /images/heart.png

:height: 11

:width: 11

.. |S| image:: /images/spade.png

:height: 11



第 2章 Syntax Details 40

:width: 11

* |Red light| means stop.

* |Green light| means go.

* |Yellow light| means go really fast.

.. |Red light| image:: red light.png

.. |Green light| image:: green light.png

.. |Yellow light| image:: yellow light.png

|-><-| is the official symbol of POEE .

.. |-><-| image:: discord.png

.. POEE: http://www.poee.org/

The “image” directive has been implemented.

Styles*7 Substitution references may be used to associate inline text with an externally defined

presentation style:

Even |the text in Texas| is big.

.. |the text in Texas| style:: big

The style name may be meaningful in the context of some particular output format (CSS

class name for HTML output, LaTeX style name for LaTeX, etc), or may be ignored for other

output formats (such as plaintext).

Templates Inline markup may be used for later processing by a template engine. For example, a

Zope author might write:

Welcome back, |name|!

.. |name| tal:: replace user/getUserName

After processing, this ZPT output would result:

Welcome back,

<span tal:replace="user/getUserName">name</span>!

Zope would then transform this to something like “Welcome back, David!” during a session

with an actual user.

Replacement text The substitution mechanism may be used for simple macro substitution. This

may be appropriate when the replacement text is repeated many times throughout one or

more documents, especially if it may need to change later. A short example is unavoidably

contrived:

*7 There may be sufficient need for a “style” mechanism to warrant simpler syntax such as an extension to the

interpreted text role syntax. The substitution mechanism is cumbersome for simple text styling.

file:directives.html#image
http://www.zope.com/


第 2章 Syntax Details 41

|RST| is a little annoying to type over and over, especially

when writing about |RST| itself, and spelling out the

bicapitalized word |RST| every time isn’t really necessary for

|RST| source readability.

.. |RST| replace:: reStructuredText

.. reStructuredText: http://docutils.sourceforge.net/rst.html

Substitution is also appropriate when the replacement text cannot be represented using other

inline constructs, or is obtrusively long:

But still, that’s nothing compared to a name like

|j2ee-cas| .

.. |j2ee-cas| replace::

the Java ‘TM‘:super: 2 Platform, Enterprise Edition Client

Access Services

http://developer.java.sun.com/developer/earlyAccess/

j2eecas/

The “replace” directive has been implemented.

2.5.28 Comments

Doctree element: comment.

Arbitrary indented text may follow the explicit markup start and will be processed as a comment

element. No further processing is done on the comment block text; a comment contains a single “text

blob”. Depending on the output formatter, comments may be removed from the processed output.

The only restriction on comments is that they not use the same syntax as any of the other explicit

markup constructs: substitution definitions, directives, footnotes, citations, or hyperlink targets. To

ensure that none of the other explicit markup constructs is recognized, leave the “..” on a line by

itself:

.. This is a comment

..

so: is this!

..

[and] this!

..

this:: too!

..

|even| this:: !

file:directives.html#replace


第 2章 Syntax Details 42

A explicit markup start followed by a blank line and nothing else (apart from whitespace) is an

“empty comment”. It serves to terminate a preceding construct, and does not consume any indented

text following. To have a block quote follow a list or any indented construct, insert an unindented

empty comment in-between.

Syntax diagram:

+-------+----------------------+

| ".. " | comment |

+-------+ block |

| |

+----------------------+

2.6 Implicit Hyperlink Targets

Implicit hyperlink targets are generated by section titles, footnotes, and citations, and may also be

generated by extension constructs. Implicit hyperlink targets otherwise behave identically to explicit

hyperlink targets.

Problems of ambiguity due to conflicting duplicate implicit and explicit reference names are avoided

by following this procedure:

1. Explicit hyperlink targets override any implicit targets having the same reference name.

The implicit hyperlink targets are removed, and level-1 (info) system messages are

inserted.

2. Duplicate implicit hyperlink targets are removed, and level-1 (info) system messages in-

serted. For example, if two or more sections have the same title (such as “Introduction”

subsections of a rigidly-structured document), there will be duplicate implicit hyperlink

targets.

3. Duplicate explicit hyperlink targets are removed, and level-2 (warning) system messages

are inserted. Exception: duplicate external hyperlink targets (identical hyperlink names

and referenced URIs) do not conflict, and are not removed.

System messages are inserted where target links have been removed. See “Error Handling” in PEP

258.

The parser must return a set of unique hyperlink targets. The calling software (such as the

Docutils) can warn of unresolvable links, giving reasons for the messages.

2.7 Inline Markup

In reStructuredText, inline markup applies to words or phrases within a text block. The same

whitespace and punctuation that serves to delimit words in written text is used to delimit the inline

markup syntax constructs. The text within inline markup may not begin or end with whitespace.

file:../../peps/pep-0258.html
file:../../peps/pep-0258.html
http://docutils.sourceforge.net/


第 2章 Syntax Details 43

Arbitrary character-level inline markup is supported although not encouraged. Inline markup cannot

be nested.

There are nine inline markup constructs. Five of the constructs use identical start-strings and

end-strings to indicate the markup:

• emphasis: “*”

• strong emphasis: “**”

• interpreted text: “‘”

• inline literals: ““”

• substitution references: “|”

Three constructs use different start-strings and end-strings:

• inline internal targets: “ ‘” and “‘”

• footnote references: “[” and “] ”

• hyperlink references: “‘” and “‘ ” (phrases), or just a trailing “ ” (single words)

Standalone hyperlinks are recognized implicitly, and use no extra markup.

The inline markup start-string and end-string recognition rules are as follows. If any of the

conditions are not met, the start-string or end-string will not be recognized or processed.

1. Inline markup start-strings must start a text block or be immediately preceded by

whitespace or one of:

’ " ( [ { < - / :

2. Inline markup start-strings must be immediately followed by non-whitespace.

3. Inline markup end-strings must be immediately preceded by non-whitespace.

4. Inline markup end-strings must end a text block or be immediately followed by whites-

pace or one of:

’ " ) ] } > - / : . , ; ! ? \
5. If an inline markup start-string is immediately preceded by a single or double quote,

“(”, “[”, “{”, or “<”, it must not be immediately followed by the corresponding single

or double quote, “)”, “]”, “}”, or “>”.

6. An inline markup end-string must be separated by at least one character from the

start-string.

7. An unescaped backslash preceding a start-string or end-string will disable markup recog-

nition, except for the end-string of inline literals. See Escaping Mechanism above for

details.

For example, none of the following are recognized as containing inline markup start-strings:

• asterisks: * “*” ’*’ (*) (* [*] {*} 1*x BOM32 *

• double asterisks: ** a**b O(N**2) etc.

• backquotes: ‘ “ etc.



第 2章 Syntax Details 44

• underscores: init init () etc.

• vertical bars: | || etc.

It may be desirable to use inline literals for some of these anyhow, especially if they represent code

snippets. It’s a judgment call.

These cases do require either literal-quoting or escaping to avoid misinterpretation:

*4, class , *args, **kwargs, ‘TeX-quoted’, *ML, *.txt

The inline markup recognition rules were devised intentionally to allow 90% of non-markup uses of

“*”, “‘”, “ ”, and “|” without resorting to backslashes. For 9 of the remaining 10%, use inline literals

or literal blocks:

"‘‘\*‘‘" -> "\*" (possibly in another font or quoted)

Only those who understand the escaping and inline markup rules should attempt the remaining 1%.

;-)

Inline markup delimiter characters are used for multiple constructs, so to avoid ambiguity there

must be a specific recognition order for each character. The inline markup recognition order is as

follows:

• Asterisks: Strong emphasis (“**”) is recognized before emphasis (“*”).

• Backquotes: Inline literals (““”), inline internal targets (leading “ ‘”, trailing “‘”), are mutually

independent, and are recognized before phrase hyperlink references (leading “‘”, trailing “‘ ”)

and interpreted text (“‘”).

• Trailing underscores: Footnote references (“[” + label + “] ”) and simple hyperlink references

(name + trailing “ ”) are mutually independent.

• Vertical bars: Substitution references (“|”) are independently recognized.

• Standalone hyperlinks are the last to be recognized.

2.7.1 Character-Level Inline Markup

It is possible to mark up individual characters within a word with backslash escapes (see Escaping

Mechanism above). Backslash escapes can be used to allow arbitrary text to immediately follow

inline markup:

Python ‘‘list‘‘\s use square bracket syntax.

The backslash will disappear from the processed document. The word “list” will appear as inline

literal text, and the letter “s” will immediately follow it as normal text, with no space in-between.

Arbitrary text may immediately precede inline markup using backslash-escaped whitespace:

Possible in *re*\ ‘‘Structured‘‘\ *Text*, though not encouraged.



第 2章 Syntax Details 45

The backslashes and spaces separating “re”, “Structured”, and “Text” above will disappear from

the processed document.

Caution!

The use of backslash-escapes for character-level inline markup is not encouraged. Such use

is ugly and detrimental to the unprocessed document’s readability. Please use this feature

sparingly and only where absolutely necessary.

2.7.2 Emphasis

Doctree element: emphasis.

Start-string = end-string = “*”.

Text enclosed by single asterisk characters is emphasized:

This is *emphasized text*.

Emphasized text is typically displayed in italics.

2.7.3 Strong Emphasis

Doctree element: strong.

Start-string = end-string = “**”.

Text enclosed by double-asterisks is emphasized strongly:

This is **strong text**.

Strongly emphasized text is typically displayed in boldface.

2.7.4 Interpreted Text

Doctree element: depends on the explicit or implicit role and processing.

Start-string = end-string = “‘”.

Interpreted text is text that is meant to be related, indexed, linked, summarized, or otherwise

processed, but the text itself is typically left alone. Interpreted text is enclosed by single backquote

characters:

This is ‘interpreted text‘.

The “role” of the interpreted text determines how the text is interpreted. The role may be inferred

implicitly (as above; the “default role” is used) or indicated explicitly, using a role marker. A role

marker consists of a colon, the role name, and another colon. A role name is a single word consisting

of alphanumerics plus internal hyphens, underscores, and periods; no whitespace or other characters

are allowed. A role marker is either a prefix or a suffix to the interpreted text, whichever reads

better; it’s up to the author:



第 2章 Syntax Details 46

:role:‘interpreted text‘

‘interpreted text‘:role:

Interpreted text allows extensions to the available inline descriptive markup constructs. To emphasis,

strong emphasis, inline literals, and hyperlink references, we can add “title reference”, “index entry”,

“acronym”, “class”, “red”, “blinking” or anything else we want. Only pre-determined roles are

recognized; unknown roles will generate errors. A core set of standard roles is implemented in

the reference parser; see reStructuredText Interpreted Text Roles for individual descriptions. In

addition, applications may support specialized roles.

2.7.5 Inline Literals

Doctree element: literal.

Start-string = end-string = ““”.

Text enclosed by double-backquotes is treated as inline literals:

This text is an example of ‘‘inline literals‘‘.

Inline literals may contain any characters except two adjacent backquotes in an end-string context

(according to the recognition rules above). No markup interpretation (including backslash-escape

interpretation) is done within inline literals.

Line breaks are not preserved in inline literals. Although a reStructuredText parser will preserve

runs of spaces in its output, the final representation of the processed document is dependent on the

output formatter, thus the preservation of whitespace cannot be guaranteed. If the preservation of

line breaks and/or other whitespace is important, literal blocks should be used.

Inline literals are useful for short code snippets. For example:

The regular expression ‘‘[+-]?(\d+(\.\d*)?|\.\d+)‘‘ matches

floating-point numbers (without exponents).

2.7.6 Hyperlink References

Doctree element: reference.

• Named hyperlink references:

– Start-string = “” (empty string), end-string = “ ”.

– Start-string = “‘”, end-string = “‘ ”. (Phrase references.)

• Anonymous hyperlink references:

– Start-string = “” (empty string), end-string = “ ”.

– Start-string = “‘”, end-string = “‘ ”. (Phrase references.)

file:roles.html
http://www/


第 2章 Syntax Details 47

Hyperlink references are indicated by a trailing underscore, “ ”, except for standalone hyperlinks

which are recognized independently. The underscore can be thought of as a right-pointing arrow.

The trailing underscores point away from hyperlink references, and the leading underscores point

toward hyperlink targets.

Hyperlinks consist of two parts. In the text body, there is a source link, a reference name with a

trailing underscore (or two underscores for anonymous hyperlinks):

See the Python home page for info.

A target link with a matching reference name must exist somewhere else in the document. See

Hyperlink Targets for a full description).

Anonymous hyperlinks (which see) do not use reference names to match references to targets, but

otherwise behave similarly to named hyperlinks.

2.7.7 Embedded URIs

A hyperlink reference may directly embed a target URI inline, within angle brackets (“<...>”) as

follows:

See the ‘Python home page <http://www.python.org>‘ for info.

This is exactly equivalent to:

See the ‘Python home page‘ for info.

.. Python home page: http://www.python.org

The bracketed URI must be preceded by whitespace and be the last text before the end string. With

a single trailing underscore, the reference is named and the same target URI may be referred to

again.

With two trailing underscores, the reference and target are both anonymous, and the target cannot

be referred to again. These are “one-off” hyperlinks. For example:

‘RFC 2396 <http://www.rfc-editor.org/rfc/rfc2396.txt>‘ and ‘RFC

2732 <http://www.rfc-editor.org/rfc/rfc2732.txt>‘ together

define the syntax of URIs.

Equivalent to:

‘RFC 2396‘ and ‘RFC 2732‘ together define the syntax of URIs.

http://www.rfc-editor.org/rfc/rfc2396.txt

http://www.rfc-editor.org/rfc/rfc2732.txt



第 2章 Syntax Details 48

If reference text happens to end with angle-bracketed text that is not a URI, the open-angle-bracket

needs to be backslash-escaped. For example, here is a reference to a title describing a tag:

See ‘HTML Element: \<a>‘ below.

The reference text may also be omitted, in which case the URI will be duplicated for use as the

reference text. This is useful for relative URIs where the address or file name is also the desired

reference text:

See ‘<a named relative link>‘ or ‘<an anonymous relative link>‘

for details.

Caution!

This construct offers easy authoring and maintenance of hyperlinks at the expense of general

readability. Inline URIs, especially long ones, inevitably interrupt the natural flow of text. For

documents meant to be read in source form, the use of independent block-level hyperlink

targets is strongly recommended. The embedded URI construct is most suited to documents

intended only to be read in processed form.

2.7.8 Inline Internal Targets

Doctree element: target.

Start-string = “ ‘”, end-string = “‘”.

Inline internal targets are the equivalent of explicit internal hyperlink targets, but may appear

within running text. The syntax begins with an underscore and a backquote, is followed by a

hyperlink name or phrase, and ends with a backquote. Inline internal targets may not be anonymous.

For example, the following paragraph contains a hyperlink target named “Norwegian Blue”:

Oh yes, the ‘Norwegian Blue‘. What’s, um, what’s wrong with it?

See Implicit Hyperlink Targets for the resolution of duplicate reference names.

2.7.9 Footnote References

Doctree element: footnote reference.

Start-string = “[”, end-string = “] ”.

Each footnote reference consists of a square-bracketed label followed by a trailing underscore.

Footnote labels are one of:

• one or more digits (i.e., a number),

• a single “#” (denoting auto-numbered footnotes),

• a “#” followed by a simple reference name (an autonumber label), or

• a single “*” (denoting auto-symbol footnotes).



第 2章 Syntax Details 49

For example:

Please RTFM [1] .

.. [1] Read The Fine Manual

2.7.10 Citation References

Doctree element: citation reference.

Start-string = “[”, end-string = “] ”.

Each citation reference consists of a square-bracketed label followed by a trailing underscore.

Citation labels are simple reference names (case-insensitive single words, consisting of alphanumerics

plus internal hyphens, underscores, and periods; no whitespace).

For example:

Here is a citation reference: [CIT2002] .

See Citations for the citation itself.

2.7.11 Substitution References

Doctree element: substitution reference, reference.

Start-string = “|”, end-string = “|” (optionally followed by “ ” or “ ”).

Vertical bars are used to bracket the substitution reference text. A substitution reference may also

be a hyperlink reference by appending a “ ” (named) or “ ” (anonymous) suffix; the substitution

text is used for the reference text in the named case.

The processing system replaces substitution references with the processed contents of the cor-

responding substitution definitions (which see for the definition of “correspond”). Substitution

definitions produce inline-compatible elements.

Examples:

This is a simple |substitution reference|. It will be replaced by

the processing system.

This is a combination |substitution and hyperlink reference| . In

addition to being replaced, the replacement text or element will

refer to the "substitution and hyperlink reference" target.

2.7.12 Standalone Hyperlinks

Doctree element: reference.

Start-string = end-string = “” (empty string).



第 2章 Syntax Details 50

A URI (absolute URI*8 or standalone email address) within a text block is treated as a general

external hyperlink with the URI itself as the link’s text. For example:

See http://www.python.org for info.

would be marked up in HTML as:

See <a href="http://www.python.org">http://www.python.org</a> for

info.

Two forms of URI are recognized:

1. Absolute URIs. These consist of a scheme, a colon (“:”), and a scheme-specific part

whose interpretation depends on the scheme.

The scheme is the name of the protocol, such as “http”, “ftp”, “mailto”, or “telnet”.

The scheme consists of an initial letter, followed by letters, numbers, and/or “+”, “-”,

“.”. Recognition is limited to known schemes, per the Official IANA Registry of URI

Schemes and the W3C’s Retired Index of WWW Addressing Schemes.

The scheme-specific part of the resource identifier may be either hierarchical or opaque:

• Hierarchical identifiers begin with one or two slashes and may use slashes to separate

hierarchical components of the path. Examples are web pages and FTP sites:

http://www.python.org

ftp://ftp.python.org/pub/python

• Opaque identifiers do not begin with slashes. Examples are email addresses and

newsgroups:

mailto:someone@somewhere.com

news:comp.lang.python

With queries, fragments, and %-escape sequences, URIs can become quite complicated.

A reStructuredText parser must be able to recognize any absolute URI, as defined in

RFC2396 and RFC2732.

2. Standalone email addresses, which are treated as if they were absolute URIs with a

“mailto:” scheme. Example:

someone@somewhere.com

Punctuation at the end of a URI is not considered part of the URI, unless the URI is terminated by

a closing angle bracket (“>”). Backslashes may be used in URIs to escape markup characters, specif-

ically asterisks (“*”) and underscores (“ ”) which are vaid URI characters (see Escaping Mechanism

above).

*8 Uniform Resource Identifier. URIs are a general form of URLs (Uniform Resource Locators). For the syntax

of URIs see RFC2396 and RFC2732.

http://www.iana.org/assignments/uri-schemes
http://www.iana.org/assignments/uri-schemes
http://www.w3.org/Addressing/schemes.html
http://www.rfc-editor.org/rfc/rfc2396.txt
http://www.rfc-editor.org/rfc/rfc2732.txt
http://www.rfc-editor.org/rfc/rfc2396.txt
http://www.rfc-editor.org/rfc/rfc2732.txt


第 2章 Syntax Details 51

2.8 Units

(New in Docutils 3.4.10.)

All measures consist of a positive floating point number in standard (non-scientific) notation and

a unit, possibly separated by one or more spaces.

Units are only supported where explicitly mentioned in the reference manuals.

2.8.1 Length Units

The following length units are supported by the reStructuredText parser:

• em (ems, the height of the element’s font)

• ex (x-height, the height of the letter “x”)

• px (pixels, relative to the canvas resolution)

• in (inches; 1in=2.54cm)

• cm (centimeters; 1cm=10mm)

• mm (millimeters)

• pt (points; 1pt=1/72in)

• pc (picas; 1pc=12pt)

(List and explanations taken from http://www.htmlhelp.com/reference/css/units.html#length.)

The following are all valid length values: “1.5em”, “20 mm”, “.5in”.

2.8.2 Percentage Units

Percentage values have a percent sign (“%”) as unit. Percentage values are relative to other values,

depending on the context in which they occur.

http://www.htmlhelp.com/reference/css/units.html#length


52

第 3章

Error Handling

Doctree element: system message, problematic.

Markup errors are handled according to the specification in PEP 258.

file:../../peps/pep-0258.html

	第1章Quick Syntax Overview
	第2章Syntax Details
	2.1 Whitespace
	2.2 Escaping Mechanism
	2.3 Reference Names
	2.4 Document Structure
	2.5 Body Elements
	2.6 Implicit Hyperlink Targets
	2.7 Inline Markup
	2.8 Units

	第3章Error Handling

