
1

reStructuredText Markup Specification

David Goodger

goodger@users.sourceforge.net

$Date: 2005-06-17 17:20:28 +0200 (Fri, 17 Jun 2005) $

Revision: Revision : 3506

Copyright: This document has been placed in the public domain.

Note

This document is a detailed technical specification; it is not a tutorial or a primer. If this

is your first exposure to reStructuredText, please read A ReStructuredText Primer and

the Quick reStructuredText user reference first.

reStructuredText is plaintext that uses simple and intuitive constructs to indicate the struc-

ture of a document. These constructs are equally easy to read in raw and processed forms.

This document is itself an example of reStructuredText (raw, if you are reading the text file,

or processed, if you are reading an HTML document, for example). The reStructuredText

parser is a component of Docutils.

Simple, implicit markup is used to indicate special constructs, such as section headings,

bullet lists, and emphasis. The markup used is as minimal and unobtrusive as possible. Less

often-used constructs and extensions to the basic reStructuredText syntax may have more

elaborate or explicit markup.

reStructuredText is applicable to documents of any length, from the very small (such as

inline program documentation fragments, e.g. Python docstrings) to the quite large (this

document).

The first section gives a quick overview of the syntax of the reStructuredText markup by

example. A complete specification is given in the Syntax Details section.

Literal blocks (in which no markup processing is done) are used for examples throughout

this document, to illustrate the plaintext markup.

Contents

Quick Syntax Overview

Syntax Details

Whitespace

Blank Lines

file:../../user/rst/quickstart.html
file:../../user/rst/quickref.html
http://docutils.sourceforge.net/rst.html
http://docutils.sourceforge.net/

reStructuredText Markup Specification 2

Indentation

Escaping Mechanism

Reference Names

Document Structure

Document

Sections

Transitions

Body Elements

Paragraphs

Bullet Lists

Enumerated Lists

Definition Lists

Field Lists

Bibliographic Fields

RCS Keywords

Option Lists

Literal Blocks

Indented Literal Blocks

Quoted Literal Blocks

Line Blocks

Block Quotes

Doctest Blocks

Tables

Grid Tables

Simple Tables

Explicit Markup Blocks

Footnotes

Auto-Numbered Footnotes

Auto-Symbol Footnotes

Mixed Manual and Auto-Numbered Footnotes

Citations

Hyperlink Targets

Anonymous Hyperlinks

Directives

Substitution Definitions

Comments

Implicit Hyperlink Targets

Inline Markup

Character-Level Inline Markup

Emphasis

— 物理のかぎしっぽ http://www12.plala.or.jp/ksp/ —

reStructuredText Markup Specification 3

Strong Emphasis

Interpreted Text

Inline Literals

Hyperlink References

Embedded URIs

Inline Internal Targets

Footnote References

Citation References

Substitution References

Standalone Hyperlinks

Units

Length Units

Percentage Units

Error Handling

Quick Syntax Overview

A reStructuredText document is made up of body or block-level elements, and may be

structured into sections. Sections are indicated through title style (underlines & optional

overlines). Sections contain body elements and/or subsections. Some body elements contain

further elements, such as lists containing list items, which in turn may contain paragraphs and

other body elements. Others, such as paragraphs, contain text and inline markup elements.

Here are examples of body elements:

• Paragraphs (and inline markup):

Paragraphs contain text and may contain inline markup:

emphasis, **strong emphasis**, ‘interpreted text‘, ‘‘inline

literals‘‘, standalone hyperlinks (http://www.python.org),

external hyperlinks (Python), internal cross-references

(example), footnote references ([1]), citation references

([CIT2002]), substitution references (|example|), and ‘inline

internal targets‘.

Paragraphs are separated by blank lines and are left-aligned.

• Five types of lists:

1. Bullet lists:

- This is a bullet list.

- Bullets can be "-", "*", or "+".

— 物理のかぎしっぽ http://www12.plala.or.jp/ksp/ —

reStructuredText Markup Specification 4

2. Enumerated lists:

1. This is an enumerated list.

2. Enumerators may be arabic numbers, letters, or roman

numerals.

3. Definition lists:

what

Definition lists associate a term with a definition.

how

The term is a one-line phrase, and the definition is one

or more paragraphs or body elements, indented relative to

the term.

4. Field lists:

:what: Field lists map field names to field bodies, like

database records. They are often part of an extension

syntax.

:how: The field marker is a colon, the field name, and a

colon.

The field body may contain one or more body elements,

indented relative to the field marker.

5. Option lists, for listing command-line options:

-a command-line option "a"

-b file options can have arguments

and long descriptions

--long options can be long also

--input=file long options can also have

arguments

/V DOS/VMS-style options too

There must be at least two spaces between the option and the description.

• Literal blocks:

Literal blocks are either indented or line-prefix-quoted blocks,

and indicated with a double-colon ("::") at the end of the

preceding paragraph (right here -->)::

if literal block:

text = ’is left as-is’

spaces and linebreaks = ’are preserved’

— 物理のかぎしっぽ http://www12.plala.or.jp/ksp/ —

reStructuredText Markup Specification 5

markup processing = None

• Block quotes:

Block quotes consist of indented body elements:

This theory, that is mine, is mine.

-- Anne Elk (Miss)

• Doctest blocks:

>>> print ’Python-specific usage examples; begun with ">>>"’

Python-specific usage examples; begun with ">>>"

>>> print ’(cut and pasted from interactive Python sessions)’

(cut and pasted from interactive Python sessions)

• Two syntaxes for tables:

1. Grid tables; complete, but complex and verbose:

+------------------------+------------+----------+

| Header row, column 1 | Header 2 | Header 3 |

+========================+============+==========+

| body row 1, column 1 | column 2 | column 3 |

+------------------------+------------+----------+

| body row 2 | Cells may span |

+------------------------+-----------------------+

2. Simple tables; easy and compact, but limited:

==================== ========== ==========

Header row, column 1 Header 2 Header 3

==================== ========== ==========

body row 1, column 1 column 2 column 3

body row 2 Cells may span columns

==================== ======================

• Explicit markup blocks all begin with an explicit block marker, two periods and a space:

– Footnotes:

.. [1] A footnote contains body elements, consistently

indented by at least 3 spaces.

– Citations:

.. [CIT2002] Just like a footnote, except the label is

textual.

– Hyperlink targets:

.. Python: http://www.python.org

.. example:

— 物理のかぎしっぽ http://www12.plala.or.jp/ksp/ —

reStructuredText Markup Specification 6

The " example" target above points to this paragraph.

– Directives:

.. image:: mylogo.eps

– Substitution definitions:

.. |symbol here| image:: symbol.png

– Comments:

.. Comments begin with two dots and a space. Anything may

follow, except for the syntax of footnotes/citations,

hyperlink targets, directives, or substitution definitions.

Syntax Details

Descriptions below list “doctree elements” (document tree element names; XML DTD

generic identifiers) corresponding to syntax constructs. For details on the hierarchy of ele-

ments, please see The Docutils Document Tree and the Docutils Generic DTD XML document

type definition.

Whitespace

Spaces are recommended for indentation, but tabs may also be used. Tabs will be converted

to spaces. Tab stops are at every 8th column.

Other whitespace characters (form feeds [chr(12)] and vertical tabs [chr(11)]) are converted

to single spaces before processing.

Blank Lines

Blank lines are used to separate paragraphs and other elements. Multiple successive blank

lines are equivalent to a single blank line, except within literal blocks (where all whitespace

is preserved). Blank lines may be omitted when the markup makes element separation un-

ambiguous, in conjunction with indentation. The first line of a document is treated as if it is

preceded by a blank line, and the last line of a document is treated as if it is followed by a

blank line.

Indentation

Indentation is used to indicate, and is only significant in indicating:

• multi-line contents of list items,

• multiple body elements within a list item (including nested lists),

• the definition part of a definition list item,

• block quotes,

— 物理のかぎしっぽ http://www12.plala.or.jp/ksp/ —

file:../doctree.html
file:../docutils.dtd

reStructuredText Markup Specification 7

• the extent of literal blocks, and

• the extent of explicit markup blocks.

Any text whose indentation is less than that of the current level (i.e., unindented text or

“dedents”) ends the current level of indentation.

Since all indentation is significant, the level of indentation must be consistent. For example,

indentation is the sole markup indicator for block quotes:

This is a top-level paragraph.

This paragraph belongs to a first-level block quote.

Paragraph 2 of the first-level block quote.

Multiple levels of indentation within a block quote will result in more complex structures:

This is a top-level paragraph.

This paragraph belongs to a first-level block quote.

This paragraph belongs to a second-level block quote.

Another top-level paragraph.

This paragraph belongs to a second-level block quote.

This paragraph belongs to a first-level block quote. The

second-level block quote above is inside this first-level

block quote.

When a paragraph or other construct consists of more than one line of text, the lines must be

left-aligned:

This is a paragraph. The lines of

this paragraph are aligned at the left.

This paragraph has problems. The

lines are not left-aligned. In addition

to potential misinterpretation, warning

and/or error messages will be generated

by the parser.

— 物理のかぎしっぽ http://www12.plala.or.jp/ksp/ —

reStructuredText Markup Specification 8

Several constructs begin with a marker, and the body of the construct must be indented

relative to the marker. For constructs using simple markers (bullet lists, enumerated lists,

footnotes, citations, hyperlink targets, directives, and comments), the level of indentation of

the body is determined by the position of the first line of text, which begins on the same

line as the marker. For example, bullet list bodies must be indented by at least two columns

relative to the left edge of the bullet:

- This is the first line of a bullet list

item’s paragraph. All lines must align

relative to the first line. [1]

This indented paragraph is interpreted

as a block quote.

Because it is not sufficiently indented,

this paragraph does not belong to the list

item.

.. [1] Here’s a footnote. The second line is aligned

with the beginning of the footnote label. The ".."

marker is what determines the indentation.

For constructs using complex markers (field lists and option lists), where the marker may

contain arbitrary text, the indentation of the first line after the marker determines the left

edge of the body. For example, field lists may have very long markers (containing the field

names):

:Hello: This field has a short field name, so aligning the field

body with the first line is feasible.

:Number-of-African-swallows-required-to-carry-a-coconut: It would

be very difficult to align the field body with the left edge

of the first line. It may even be preferable not to begin the

body on the same line as the marker.

Escaping Mechanism

The character set universally available to plaintext documents, 7-bit ASCII, is limited. No

matter what characters are used for markup, they will already have multiple meanings in

written text. Therefore markup characters will sometimes appear in text without being in-

tended as markup. Any serious markup system requires an escaping mechanism to override

— 物理のかぎしっぽ http://www12.plala.or.jp/ksp/ —

reStructuredText Markup Specification 9

the default meaning of the characters used for the markup. In reStructuredText we use the

backslash, commonly used as an escaping character in other domains.

A backslash followed by any character (except whitespace characters) escapes that character.

The escaped character represents the character itself, and is prevented from playing a role in

any markup interpretation. The backslash is removed from the output. A literal backslash is

represented by two backslashes in a row (the first backslash “escapes” the second, preventing

it being interpreted in an “escaping” role).

Backslash-escaped whitespace characters are removed from the document. This allows for

character-level inline markup.

There are two contexts in which backslashes have no special meaning: literal blocks and

inline literals. In these contexts, a single backslash represents a literal backslash, without

having to double up.

Please note that the reStructuredText specification and parser do not address the issue of

the representation or extraction of text input (how and in what form the text actually reaches

the parser). Backslashes and other characters may serve a character-escaping purpose in

certain contexts and must be dealt with appropriately. For example, Python uses backslashes

in strings to escape certain characters, but not others. The simplest solution when backslashes

appear in Python docstrings is to use raw docstrings:

r"""This is a raw docstring. Backslashes (\) are not touched."""

Reference Names

Simple reference names are single words consisting of alphanumerics plus isolated (no two

adjacent) internal hyphens, underscores, and periods; no whitespace or other characters are

allowed. Footnote labels (Footnotes & Footnote References), citation labels (Citations &

Citation References), interpreted text roles, and some hyperlink references use the simple

reference name syntax.

Reference names using punctuation or whose names are phrases (two or more space-

separated words) are called “phrase-references”. Phrase-references are expressed by enclosing

the phrase in backquotes and treating the backquoted text as a reference name:

Want to learn about ‘my favorite programming language‘ ?

.. my favorite programming language: http://www.python.org

Simple reference names may also optionally use backquotes.

Reference names are whitespace-neutral and case-insensitive. When resolving reference

names internally:

• whitespace is normalized (one or more spaces, horizontal or vertical tabs, newlines,

— 物理のかぎしっぽ http://www12.plala.or.jp/ksp/ —

reStructuredText Markup Specification 10

carriage returns, or form feeds, are interpreted as a single space), and

• case is normalized (all alphabetic characters are converted to lowercase).

For example, the following hyperlink references are equivalent:

- ‘A HYPERLINK‘

- ‘a hyperlink‘

- ‘A

Hyperlink‘

Hyperlinks, footnotes, and citations all share the same namespace for reference names. The

labels of citations (simple reference names) and manually-numbered footnotes (numbers) are

entered into the same database as other hyperlink names. This means that a footnote (defined

as “.. [1]”) which can be referred to by a footnote reference ([1]), can also be referred

to by a plain hyperlink reference (1). Of course, each type of reference (hyperlink, footnote,

citation) may be processed and rendered differently. Some care should be taken to avoid

reference name conflicts.

Document Structure

Document

Doctree element: document.

The top-level element of a parsed reStructuredText document is the “document” element.

After initial parsing, the document element is a simple container for a document fragment,

consisting of body elements, transitions, and sections, but lacking a document title or other

bibliographic elements. The code that calls the parser may choose to run one or more optional

post-parse transforms, rearranging the document fragment into a complete document with a

title and possibly other metadata elements (author, date, etc.; see Bibliographic Fields).

Specifically, there is no way to indicate a document title and subtitle explicitly in reStruc-

turedText. Instead, a lone top-level section title (see Sections below) can be treated as the

document title. Similarly, a lone second-level section title immediately after the “document

title” can become the document subtitle. The rest of the sections are then lifted up a level or

two. See the DocTitle transform for details.

Sections

Doctree elements: section, title.

Sections are identified through their titles, which are marked up with adornment: “un-

derlines” below the title text, or underlines and matching “overlines” above the title. An

underline/overline is a single repeated punctuation character that begins in column 1 and

forms a line extending at least as far as the right edge of the title text. Specifically, an under-

line/overline character may be any non-alphanumeric printable 7-bit ASCII character*1. When

— 物理のかぎしっぽ http://www12.plala.or.jp/ksp/ —

http://docutils.sourceforge.net/docutils/transforms/
http://docutils.sourceforge.net/docutils/transforms/frontmatter.py

reStructuredText Markup Specification 11

an overline is used, the length and character used must match the underline. Underline-only

adornment styles are distinct from overline-and-underline styles that use the same character.

There may be any number of levels of section titles, although some output formats may have

limits (HTML has 6 levels).

Rather than imposing a fixed number and order of section title adornment styles, the order

enforced will be the order as encountered. The first style encountered will be an outermost

title (like HTML H1), the second style will be a subtitle, the third will be a subsubtitle, and

so on.

Below are examples of section title styles:

===============

Section Title

===============

Section Title

Section Title

=============

Section Title

Section Title

‘‘‘‘‘‘‘‘‘‘‘‘‘

Section Title

’’’’’’’’’’’’’

Section Title

.............

Section Title

~~~~~~~~~~~~~

*1 The following are all valid section title adornment characters:

! " # $ % & ’ ( ) * + , - . / : ; < = > ? @ [ \ ] ^ ‘ { | } ~

Some characters are more suitable than others. The following are recommended:

= - ‘ : . ’ " ~ ^ * + #

— 物理のかぎしっぽ http://www12.plala.or.jp/ksp/ —



reStructuredText Markup Specification 12

Section Title

*************

Section Title

+++++++++++++

Section Title

^^^^^^^^^^^^^

When a title has both an underline and an overline, the title text may be inset, as in the first

two examples above. This is merely aesthetic and not significant. Underline-only title text

may not be inset.

A blank line after a title is optional. All text blocks up to the next title of the same or

higher level are included in a section (or subsection, etc.).

All section title styles need not be used, nor need any specific section title style be used.

However, a document must be consistent in its use of section titles: once a hierarchy of title

styles is established, sections must use that hierarchy.

Each section title automatically generates a hyperlink target pointing to the section. The

text of the hyperlink target (the “reference name”) is the same as that of the section title.

See Implicit Hyperlink Targets for a complete description.

Sections may contain body elements, transitions, and nested sections.

Transitions

Doctree element: transition.

Instead of subheads, extra space or a type ornament between paragraphs may be used

to mark text divisions or to signal changes in subject or emphasis.

(The Chicago Manual of Style, 14th edition, section 1.80)

Transitions are commonly seen in novels and short fiction, as a gap spanning one or more

lines, with or without a type ornament such as a row of asterisks. Transitions separate other

body elements. A transition should not begin or end a section or document, nor should two

transitions be immediately adjacent.

The syntax for a transition marker is a horizontal line of 4 or more repeated punctuation

characters. The syntax is the same as section title underlines without title text. Transition

markers require blank lines before and after:

Para.

----------

Para.

— 物理のかぎしっぽ http://www12.plala.or.jp/ksp/ —



reStructuredText Markup Specification 13

Unlike section title underlines, no hierarchy of transition markers is enforced, nor do differences

in transition markers accomplish anything. It is recommended that a single consistent style

be used.

The processing system is free to render transitions in output in any way it likes. For example,

horizontal rules (<hr>) in HTML output would be an obvious choice.

Body Elements

Paragraphs

Doctree element: paragraph.

Paragraphs consist of blocks of left-aligned text with no markup indicating any other body

element. Blank lines separate paragraphs from each other and from other body elements.

Paragraphs may contain inline markup.

Syntax diagram:

+------------------------------+

| paragraph |

| |

+------------------------------+

+------------------------------+

| paragraph |

| |

+------------------------------+

Bullet Lists

Doctree elements: bullet list, list item.

A text block which begins with a “-”, “*”, or “+”, followed by whitespace, is a bullet list

item (a.k.a. “unordered” list item). List item bodies must be left-aligned and indented relative

to the bullet; the text immediately after the bullet determines the indentation. For example:

- This is the first bullet list item. The blank line above the

first list item is required; blank lines between list items

(such as below this paragraph) are optional.

- This is the first paragraph in the second item in the list.

This is the second paragraph in the second item in the list.

The blank line above this paragraph is required. The left edge

of this paragraph lines up with the paragraph above, both

— 物理のかぎしっぽ http://www12.plala.or.jp/ksp/ —



reStructuredText Markup Specification 14

indented relative to the bullet.

- This is a sublist. The bullet lines up with the left edge of

the text blocks above. A sublist is a new list so requires a

blank line above and below.

- This is the third item of the main list.

This paragraph is not part of the list.

Here are examples of incorrectly formatted bullet lists:

- This first line is fine.

A blank line is required between list items and paragraphs.

(Warning)

- The following line appears to be a new sublist, but it is not:

- This is a paragraph continuation, not a sublist (since there’s

no blank line). This line is also incorrectly indented.

- Warnings may be issued by the implementation.

Syntax diagram:

+------+-----------------------+

| "- " | list item |

+------| (body elements)+ |

+-----------------------+

Enumerated Lists

Doctree elements: enumerated list, list item.

Enumerated lists (a.k.a. “ordered” lists) are similar to bullet lists, but use enumerators in-

stead of bullets. An enumerator consists of an enumeration sequence member and formatting,

followed by whitespace. The following enumeration sequences are recognized:

• arabic numerals: 1, 2, 3, ... (no upper limit).

• uppercase alphabet characters: A, B, C, ..., Z.

• lower-case alphabet characters: a, b, c, ..., z.

• uppercase Roman numerals: I, II, III, IV, ..., MMMMCMXCIX (4999).

• lowercase Roman numerals: i, ii, iii, iv, ..., mmmmcmxcix (4999).

In addition, the auto-enumerator, “#”, may be used to automatically enumerate a list. Auto-

enumerated lists may begin with explicit enumeration, which sets the sequence. Fully auto-

— 物理のかぎしっぽ http://www12.plala.or.jp/ksp/ —



reStructuredText Markup Specification 15

enumerated lists use arabic numerals and begin with 1.

The following formatting types are recognized:

• suffixed with a period: “1.”, “A.”, “a.”, “I.”, “i.”.

• surrounded by parentheses: “(1)”, “(A)”, “(a)”, “(I)”, “(i)”.

• suffixed with a right-parenthesis: “1)”, “A)”, “a)”, “I)”, “i)”.

While parsing an enumerated list, a new list will be started whenever:

• An enumerator is encountered which does not have the same format and sequence type

as the current list (e.g. “1.”, “(a)” produces two separate lists).

• The enumerators are not in sequence (e.g., “1.”, “3.” produces two separate lists).

It is recommended that the enumerator of the first list item be ordinal-1 (“1”, “A”, “a”, “I”,

or “i”). Although other start-values will be recognized, they may not be supported by the

output format. A level-1 [info] system message will be generated for any list beginning with

a non-ordinal-1 enumerator.

Lists using Roman numerals must begin with “I”/“i” or a multi-character value, such as “II”

or “XV”. Any other single-character Roman numeral (“V”, “X”, “L”, “C”, “D”, “M”) will be

interpreted as a letter of the alphabet, not as a Roman numeral. Likewise, lists using letters

of the alphabet may not begin with “I”/“i”, since these are recognized as Roman numeral 1.

The second line of each enumerated list item is checked for validity. This is to prevent

ordinary paragraphs from being mistakenly interpreted as list items, when they happen to

begin with text identical to enumerators. For example, this text is parsed as an ordinary

paragraph:

A. Einstein was a really

smart dude.

However, ambiguity cannot be avoided if the paragraph consists of only one line. This text is

parsed as an enumerated list item:

A. Einstein was a really smart dude.

If a single-line paragraph begins with text identical to an enumerator (“A.”, “1.”, “(b)”, “I)”,

etc.), the first character will have to be escaped in order to have the line parsed as an ordinary

paragraph:

\A. Einstein was a really smart dude.

Nested enumerated lists must be created with indentation. For example:

1. Item 1.

a) Item 1a.

— 物理のかぎしっぽ http://www12.plala.or.jp/ksp/ —



reStructuredText Markup Specification 16

b) Item 1b.

Example syntax diagram:

+-------+----------------------+

| "1. " | list item |

+-------| (body elements)+ |

+----------------------+

Definition Lists

Doctree elements: definition list, definition list item, term, classifier, definition.

Each definition list item contains a term, optional classifiers, and a definition. A term is

a simple one-line word or phrase. Optional classifiers may follow the term on the same line,

each after an inline “ : ” (space, colon, space). A definition is a block indented relative to

the term, and may contain multiple paragraphs and other body elements. There may be no

blank line between a term line and a definition block (this distinguishes definition lists from

block quotes). Blank lines are required before the first and after the last definition list item,

but are optional in-between. For example:

term 1

Definition 1.

term 2

Definition 2, paragraph 1.

Definition 2, paragraph 2.

term 3 : classifier

Definition 3.

term 4 : classifier one : classifier two

Definition 4.

Inline markup is parsed in the term line before the classifier delimiter (“ : ”) is recognized.

The delimiter will only be recognized if it appears outside of any inline markup.

A definition list may be used in various ways, including:

• As a dictionary or glossary. The term is the word itself, a classifier may be used to

indicate the usage of the term (noun, verb, etc.), and the definition follows.

• To describe program variables. The term is the variable name, a classifier may be used

to indicate the type of the variable (string, integer, etc.), and the definition describes

the variable’s use in the program. This usage of definition lists supports the classifier

— 物理のかぎしっぽ http://www12.plala.or.jp/ksp/ —



reStructuredText Markup Specification 17

syntax of Grouch, a system for describing and enforcing a Python object schema.

Syntax diagram:

+----------------------------+

| term [ " : " classifier ]* |

+--+-------------------------+--+

| definition |

| (body elements)+ |

+----------------------------+

Field Lists

Doctree elements: field list, field, field name, field body.

Field lists are used as part of an extension syntax, such as options for directives, or database-

like records meant for further processing. They may also be used for two-column table-like

structures resembling database records (label & data pairs). Applications of reStructuredText

may recognize field names and transform fields or field bodies in certain contexts. For exam-

ples, see Bibliographic Fields below, or the “image” and “meta” directives in reStructuredText

Directives.

Field lists are mappings from field names to field bodies, modeled on RFC822 headers. A

field name is made up of one or more letters, numbers, whitespace, and punctuation, except

colons (“:”). Inline markup is parsed in field names. Field names are case-insensitive when

further processed or transformed. The field name, along with a single colon prefix and suffix,

together form the field marker. The field marker is followed by whitespace and the field body.

The field body may contain multiple body elements, indented relative to the field marker.

The first line after the field name marker determines the indentation of the field body. For

example:

:Date: 2001-08-16

:Version: 1

:Authors: - Me

- Myself

- I

:Indentation: Since the field marker may be quite long, the second

and subsequent lines of the field body do not have to line up

with the first line, but they must be indented relative to the

field name marker, and they must line up with each other.

:Parameter i: integer

The interpretation of individual words in a multi-word field name is up to the application.

The application may specify a syntax for the field name. For example, second and subsequent

— 物理のかぎしっぽ http://www12.plala.or.jp/ksp/ —

http://www.mems-exchange.org/software/grouch/
file:directives.html#image
file:directives.html#meta
file:directives.html
file:directives.html
http://www.rfc-editor.org/rfc/rfc822.txt


reStructuredText Markup Specification 18

words may be treated as “arguments”, quoted phrases may be treated as a single argument,

and direct support for the “name=value” syntax may be added.

Standard RFC822 headers cannot be used for this construct because they are ambiguous.

A word followed by a colon at the beginning of a line is common in written text. However, in

well-defined contexts such as when a field list invariably occurs at the beginning of a document

(PEPs and email messages), standard RFC822 headers could be used.

Syntax diagram (simplified):

+--------------------+----------------------+

| ":" field name ":" | field body |

+-------+------------+ |

| (body elements)+ |

+-----------------------------------+

Bibliographic Fields

Doctree elements: docinfo, author, authors, organization, contact, version, status, date,

copyright, field, topic.

When a field list is the first non-comment element in a document (after the document title,

if there is one), it may have its fields transformed to document bibliographic data. This

bibliographic data corresponds to the front matter of a book, such as the title page and

copyright page.

Certain registered field names (listed below) are recognized and transformed to the cor-

responding doctree elements, most becoming child elements of the “docinfo” element. No

ordering is required of these fields, although they may be rearranged to fit the document

structure, as noted. Unless otherwise indicated below, each of the bibliographic elements’

field bodies may contain a single paragraph only. Field bodies may be checked for RCS key-

words and cleaned up. Any unrecognized fields will remain as generic fields in the docinfo

element.

The registered bibliographic field names and their corresponding doctree elements are as

follows:

• Field name “Author”: author element.

• “Authors”: authors.

• “Organization”: organization.

• “Contact”: contact.

• “Address”: address.

• “Version”: version.

• “Status”: status.

• “Date”: date.

• “Copyright”: copyright.

— 物理のかぎしっぽ http://www12.plala.or.jp/ksp/ —

http://www.rfc-editor.org/rfc/rfc822.txt


reStructuredText Markup Specification 19

• “Dedication”: topic.

• “Abstract”: topic.

The “Authors” field may contain either: a single paragraph consisting of a list of authors,

separated by “;” or “,”; or a bullet list whose elements each contain a single paragraph per

author. “;” is checked first, so “Doe, Jane; Doe, John” will work. In some languages (e.g.

Swedish), there is no singular/plural distinction between “Author” and “Authors”, so only an

“Authors” field is provided, and a single name is interpreted as an “Author”. If a single name

contains a comma, end it with a semicolon to disambiguate: “:Authors: Doe, Jane;”.

The “Address” field is for a multi-line surface mailing address. Newlines and whitespace

will be preserved.

The “Dedication” and “Abstract” fields may contain arbitrary body elements. Only one

of each is allowed. They become topic elements with “Dedication” or “Abstract” titles (or

language equivalents) immediately following the docinfo element.

This field-name-to-element mapping can be replaced for other languages. See the DocInfo

transform implementation documentation for details.

Unregistered/generic fields may contain one or more paragraphs or arbitrary body elements.

RCS Keywords

Bibliographic fields recognized by the parser are normally checked for RCS*2 keywords and

cleaned up*3. RCS keywords may be entered into source files as “keyword”, and once stored

under RCS or CVS*4, they are expanded to “keyword : expansiontext”. For example, a

“Status” field will be transformed to a “status” element:

:Status: |a0c3e994985c43be4c085b4e791ca5f7|

Processed, the “status” element’s text will become simply “expansion text”. The dollar sign

delimiters and leading RCS keyword name are removed.

The RCS keyword processing only kicks in when both of these conditions hold:

1. The field list is in bibliographic context (first non-comment construct in the doc-

ument, after a document title if there is one).

2. The field name is a recognized bibliographic field name.

Option Lists

Doctree elements: option list, option list item, option group, option, option string, op-

tion argument, description.

Option lists are two-column lists of command-line options and descriptions, documenting a

*2 Revision Control System.
*3 RCS keyword processing can be turned off (unimplemented).
*4 Concurrent Versions System. CVS uses the same keywords as RCS.

— 物理のかぎしっぽ http://www12.plala.or.jp/ksp/ —

http://docutils.sourceforge.net/docutils/transforms/frontmatter.py
http://docutils.sourceforge.net/docutils/transforms/frontmatter.py


reStructuredText Markup Specification 20

program’s options. For example:

-a Output all.

-b Output both (this description is

quite long).

-c arg Output just arg.

--long Output all day long.

-p This option has two paragraphs in the description.

This is the first.

This is the second. Blank lines may be omitted between

options (as above) or left in (as here and below).

--very-long-option A VMS-style option. Note the adjustment for

the required two spaces.

--an-even-longer-option

The description can also start on the next line.

-2, --two This option has two variants.

-f FILE, --file=FILE These two options are synonyms; both have

arguments.

/V A VMS/DOS-style option.

There are several types of options recognized by reStructuredText:

• Short POSIX options consist of one dash and an option letter.

• Long POSIX options consist of two dashes and an option word; some systems use a

single dash.

• Old GNU-style “plus” options consist of one plus and an option letter (“plus” options

are deprecated now, their use discouraged).

• DOS/VMS options consist of a slash and an option letter or word.

Please note that both POSIX-style and DOS/VMS-style options may be used by DOS or

Windows software. These and other variations are sometimes used mixed together. The

names above have been chosen for convenience only.

The syntax for short and long POSIX options is based on the syntax supported by Python’s

getopt.py module, which implements an option parser similar to the GNU libc getopt long()

function but with some restrictions. There are many variant option systems, and reStruc-

— 物理のかぎしっぽ http://www12.plala.or.jp/ksp/ —

http://www.python.org/doc/current/lib/module-getopt.html
http://www.gnu.org/software/libc/manual/html_node/Getopt-Long-Options.html


reStructuredText Markup Specification 21

turedText option lists do not support all of them.

Although long POSIX and DOS/VMS option words may be allowed to be truncated by the

operating system or the application when used on the command line, reStructuredText option

lists do not show or support this with any special syntax. The complete option word should

be given, supported by notes about truncation if and when applicable.

Options may be followed by an argument placeholder, whose role and syntax should be

explained in the description text. Either a space or an equals sign may be used as a delimiter

between options and option argument placeholders; short options (“-” or “+” prefix only) may

omit the delimiter. Option arguments may take one of two forms:

• Begins with a letter ([a-zA-Z]) and subsequently consists of letters, numbers, under-

scores and hyphens ([a-zA-Z0-9 -]).

• Begins with an open-angle-bracket (<) and ends with a close-angle-bracket (>); any

characters except angle brackets are allowed internally.

Multiple option “synonyms” may be listed, sharing a single description. They must be sepa-

rated by comma-space.

There must be at least two spaces between the option(s) and the description. The description

may contain multiple body elements. The first line after the option marker determines the

indentation of the description. As with other types of lists, blank lines are required before the

first option list item and after the last, but are optional between option entries.

Syntax diagram (simplified):

+----------------------------+-------------+

| option [" " argument] " " | description |

+-------+--------------------+ |

| (body elements)+ |

+----------------------------------+

Literal Blocks

Doctree element: literal block.

A paragraph consisting of two colons (“::”) signifies that the following text block(s) com-

prise a literal block. The literal block must either be indented or quoted (see below). No

markup processing is done within a literal block. It is left as-is, and is typically rendered in a

monospaced typeface:

This is a typical paragraph. An indented literal block follows.

::

for a in [5,4,3,2,1]: # this is program code, shown as-is

— 物理のかぎしっぽ http://www12.plala.or.jp/ksp/ —



reStructuredText Markup Specification 22

print a

print "it’s..."

# a literal block continues until the indentation ends

This text has returned to the indentation of the first paragraph,

is outside of the literal block, and is therefore treated as an

ordinary paragraph.

The paragraph containing only “::” will be completely removed from the output; no empty

paragraph will remain.

As a convenience, the “::” is recognized at the end of any paragraph. If immediately

preceded by whitespace, both colons will be removed from the output (this is the “partially

minimized” form). When text immediately precedes the “::”, one colon will be removed from

the output, leaving only one colon visible (i.e., “::” will be replaced by “:”; this is the “fully

minimized” form).

In other words, these are all equivalent (please pay attention to the colons after “Para-

graph”):

1. Expanded form:

Paragraph:

::

Literal block

2. Partially minimized form:

Paragraph: ::

Literal block

3. Fully minimized form:

Paragraph::

Literal block

All whitespace (including line breaks, but excluding minimum indentation for indented

literal blocks) is preserved. Blank lines are required before and after a literal block, but these

blank lines are not included as part of the literal block.

Indented Literal Blocks

Indented literal blocks are indicated by indentation relative to the surrounding text (leading

whitespace on each line). The minimum indentation will be removed from each line of an

indented literal block. The literal block need not be contiguous; blank lines are allowed

— 物理のかぎしっぽ http://www12.plala.or.jp/ksp/ —



reStructuredText Markup Specification 23

between sections of indented text. The literal block ends with the end of the indentation.

Syntax diagram:

+------------------------------+

| paragraph |

| (ends with "::") |

+------------------------------+

+---------------------------+

| indented literal block |

+---------------------------+

Quoted Literal Blocks

Quoted literal blocks are unindented contiguous blocks of text where each line begins with

the same non-alphanumeric printable 7-bit ASCII character*5. A blank line ends a quoted

literal block. The quoting characters are preserved in the processed document.

Possible uses include literate programming in Haskell and email quoting:

John Doe wrote::

>> Great idea!

>

> Why didn’t I think of that?

You just did! ;-)

Syntax diagram:

+------------------------------+

| paragraph |

| (ends with "::") |

+------------------------------+

+------------------------------+

| ">" per-line-quoted |

| ">" contiguous literal block |

+------------------------------+

Line Blocks

Doctree elements: line block, line. New in Docutils 0.3.5.

*5 The following are all valid quoting characters:

! " # $ % & ’ ( ) * + , - . / : ; < = > ? @ [ \ ] ^ ‘ { | } ~

Note that these are the same characters as are valid for title adornment of sections.

— 物理のかぎしっぽ http://www12.plala.or.jp/ksp/ —



reStructuredText Markup Specification 24

Line blocks are useful for address blocks, verse (poetry, song lyrics), and unadorned lists,

where the structure of lines is significant. Line blocks are groups of lines beginning with

vertical bar (“|”) prefixes. Each vertical bar prefix indicates a new line, so line breaks are

preserved. Initial indents are also significant, resulting in a nested structure. Inline markup

is supported. Continuation lines are wrapped portions of long lines; they begin with a space

in place of the vertical bar. The left edge of a continuation line must be indented, but need

not be aligned with the left edge of the text above it. A line block ends with a blank line.

This example illustrates continuation lines:

| Lend us a couple of bob till Thursday.

| I’m absolutely skint.

| But I’m expecting a postal order and I can pay you back

as soon as it comes.

| Love, Ewan.

This example illustrates the nesting of line blocks, indicated by the initial indentation of new

lines:

Take it away, Eric the Orchestra Leader!

| A one, two, a one two three four

|

| Half a bee, philosophically,

| must, *ipso facto*, half not be.

| But half the bee has got to be,

| *vis a vis* its entity. D’you see?

|

| But can a bee be said to be

| or not to be an entire bee,

| when half the bee is not a bee,

| due to some ancient injury?

|

| Singing...

Syntax diagram:

+------+-----------------------+

| "| " | line |

+------| continuation line |

+-----------------------+

— 物理のかぎしっぽ http://www12.plala.or.jp/ksp/ —



reStructuredText Markup Specification 25

Block Quotes

Doctree element: block quote, attribution.

A text block that is indented relative to the preceding text, without markup indicating it

to be a literal block, is a block quote. All markup processing (for body elements and inline

markup) continues within the block quote:

This is an ordinary paragraph, introducing a block quote.

"It is my business to know things. That is my trade."

-- Sherlock Holmes

If the final block of a block quote begins with “--”, “---”, or a true em-dash (flush left within

the block quote), it is interpreted as an attribution. If the attribution consists of multiple

lines, the left edges of the second and subsequent lines must align.

Blank lines are required before and after a block quote, but these blank lines are not included

as part of the block quote.

Syntax diagram:

+------------------------------+

| (current level of |

| indentation) |

+------------------------------+

+---------------------------+

| block quote |

| (body elements)+ |

| |

| -- attribution text |

| (optional) |

+---------------------------+

Doctest Blocks

Doctree element: doctest block.

Doctest blocks are interactive Python sessions cut-and-pasted into docstrings. They are

meant to illustrate usage by example, and provide an elegant and powerful testing environment

via the doctest module in the Python standard library.

Doctest blocks are text blocks which begin with ">>> ", the Python interactive interpreter

main prompt, and end with a blank line. Doctest blocks are treated as a special case of literal

blocks, without requiring the literal block syntax. If both are present, the literal block syntax

takes priority over Doctest block syntax:

— 物理のかぎしっぽ http://www12.plala.or.jp/ksp/ —

http://www.python.org/doc/current/lib/module-doctest.html


reStructuredText Markup Specification 26

This is an ordinary paragraph.

>>> print ’this is a Doctest block’

this is a Doctest block

The following is a literal block::

>>> This is not recognized as a doctest block by

reStructuredText. It *will* be recognized by the doctest

module, though!

Indentation is not required for doctest blocks.

Tables

Doctree elements: table, tgroup, colspec, thead, tbody, row, entry.

ReStructuredText provides two syntaxes for delineating table cells: Grid Tables and Simple

Tables.

As with other body elements, blank lines are required before and after tables. Tables’

left edges should align with the left edge of preceding text blocks; if indented, the table is

considered to be part of a block quote.

Once isolated, each table cell is treated as a miniature document; the top and bottom cell

boundaries act as delimiting blank lines. Each cell contains zero or more body elements. Cell

contents may include left and/or right margins, which are removed before processing.

Grid Tables

Grid tables provide a complete table representation via grid-like “ASCII art”. Grid tables

allow arbitrary cell contents (body elements), and both row and column spans. However, grid

tables can be cumbersome to produce, especially for simple data sets. The Emacs table mode

is a tool that allows easy editing of grid tables, in Emacs. See Simple Tables for a simpler

(but limited) representation.

Grid tables are described with a visual grid made up of the characters “-”, “=”, “|”, and

“+”. The hyphen (“-”) is used for horizontal lines (row separators). The equals sign (“=”)

may be used to separate optional header rows from the table body (not supported by the

Emacs table mode). The vertical bar (“|”) is used for vertical lines (column separators). The

plus sign (“+”) is used for intersections of horizontal and vertical lines. Example:

+------------------------+------------+----------+----------+

| Header row, column 1 | Header 2 | Header 3 | Header 4 |

| (header rows optional) | | | |

+========================+============+==========+==========+

| body row 1, column 1 | column 2 | column 3 | column 4 |

— 物理のかぎしっぽ http://www12.plala.or.jp/ksp/ —

http://table.sourceforge.net/
http://table.sourceforge.net/


reStructuredText Markup Specification 27

+------------------------+------------+----------+----------+

| body row 2 | Cells may span columns. |

+------------------------+------------+---------------------+

| body row 3 | Cells may | - Table cells |

+------------------------+ span rows. | - contain |

| body row 4 | | - body elements. |

+------------------------+------------+---------------------+

Some care must be taken with grid tables to avoid undesired interactions with cell text in rare

cases. For example, the following table contains a cell in row 2 spanning from column 2 to

column 4:

+--------------+----------+-----------+-----------+

| row 1, col 1 | column 2 | column 3 | column 4 |

+--------------+----------+-----------+-----------+

| row 2 | |

+--------------+----------+-----------+-----------+

| row 3 | | | |

+--------------+----------+-----------+-----------+

If a vertical bar is used in the text of that cell, it could have unintended effects if accidentally

aligned with column boundaries:

+--------------+----------+-----------+-----------+

| row 1, col 1 | column 2 | column 3 | column 4 |

+--------------+----------+-----------+-----------+

| row 2 | Use the command ‘‘ls | more‘‘. |

+--------------+----------+-----------+-----------+

| row 3 | | | |

+--------------+----------+-----------+-----------+

Several solutions are possible. All that is needed is to break the continuity of the cell outline

rectangle. One possibility is to shift the text by adding an extra space before:

+--------------+----------+-----------+-----------+

| row 1, col 1 | column 2 | column 3 | column 4 |

+--------------+----------+-----------+-----------+

| row 2 | Use the command ‘‘ls | more‘‘. |

+--------------+----------+-----------+-----------+

| row 3 | | | |

+--------------+----------+-----------+-----------+

Another possibility is to add an extra line to row 2:

— 物理のかぎしっぽ http://www12.plala.or.jp/ksp/ —



reStructuredText Markup Specification 28

+--------------+----------+-----------+-----------+

| row 1, col 1 | column 2 | column 3 | column 4 |

+--------------+----------+-----------+-----------+

| row 2 | Use the command ‘‘ls | more‘‘. |

| | |

+--------------+----------+-----------+-----------+

| row 3 | | | |

+--------------+----------+-----------+-----------+

Simple Tables

Simple tables provide a compact and easy to type but limited row-oriented table represen-

tation for simple data sets. Cell contents are typically single paragraphs, although arbitrary

body elements may be represented in most cells. Simple tables allow multi-line rows (in all but

the first column) and column spans, but not row spans. See Grid Tables above for a complete

table representation.

Simple tables are described with horizontal borders made up of “=” and “-” characters. The

equals sign (“=”) is used for top and bottom table borders, and to separate optional header

rows from the table body. The hyphen (“-”) is used to indicate column spans in a single row

by underlining the joined columns.

A simple table begins with a top border of equals signs with one or more spaces at each

column boundary (two or more spaces recommended). Regardless of spans, the top border

must fully describe all table columns. There must be at least two columns in the table (to

differentiate it from section headers). The last of the optional header rows is underlined

with ’=’, again with spaces at column boundaries. There may not be a blank line below the

header row separator; it would be interpreted as the bottom border of the table. The bottom

boundary of the table consists of ’=’ underlines, also with spaces at column boundaries. For

example, here is a truth table, a three-column table with one header row and four body rows:

===== ===== =======

A B A and B

===== ===== =======

False False False

True False False

False True False

True True True

===== ===== =======

Underlines of ’-’ may be used to indicate column spans by “filling in” column margins to join

adjacent columns. Column span underlines must be complete (they must cover all columns)

and align with established column boundaries. Text lines containing column span underlines

— 物理のかぎしっぽ http://www12.plala.or.jp/ksp/ —



reStructuredText Markup Specification 29

may not contain any other text. A column span underline applies only to one row immediately

above it. For example, here is a table with a column span in the header:

===== ===== ======

Inputs Output

------------ ------

A B A or B

===== ===== ======

False False False

True False True

False True True

True True True

===== ===== ======

Each line of text must contain spaces at column boundaries, except where cells have been

joined by column spans. Each line of text starts a new row, except when there is a blank

cell in the first column. In that case, that line of text is parsed as a continuation line. For

this reason, cells in the first column of new rows (not continuation lines) must contain some

text; blank cells would lead to a misinterpretation. An empty comment (“..”) is sufficient

and will be omitted from the processed output (see Comments below). Also, this mechanism

limits cells in the first column to only one line of text. Use grid tables if this limitation is

unacceptable.

Underlines of ’-’ may also be used to visually separate rows, even if there are no column

spans. This is especially useful in long tables, where rows are many lines long.

Blank lines are permitted within simple tables. Their interpretation depends on the con-

text. Blank lines between rows are ignored. Blank lines within multi-line rows may separate

paragraphs or other body elements within cells.

The rightmost column is unbounded; text may continue past the edge of the table (as

indicated by the table borders). However, it is recommended that borders be made long

enough to contain the entire text.

The following example illustrates continuation lines (row 2 consists of two lines of text, and

four lines for row 3), a blank line separating paragraphs (row 3, column 2), and text extending

past the right edge of the table:

===== =====

col 1 col 2

===== =====

1 Second column of row 1.

2 Second column of row 2.

Second line of paragraph.

3 - Second column of row 3.

— 物理のかぎしっぽ http://www12.plala.or.jp/ksp/ —



reStructuredText Markup Specification 30

- Second item in bullet

list (row 3, column 2).

===== =====

Explicit Markup Blocks

An explicit markup block is a text block:

• whose first line begins with “..” followed by whitespace (the “explicit markup start”),

• whose second and subsequent lines (if any) are indented relative to the first, and

• which ends before an unindented line.

Explicit markup blocks are analogous to bullet list items, with “..” as the bullet. The text on

the lines immediately after the explicit markup start determines the indentation of the block

body. The maximum common indentation is always removed from the second and subsequent

lines of the block body. Therefore if the first construct fits in one line, and the indentation of

the first and second constructs should differ, the first construct should not begin on the same

line as the explicit markup start.

Blank lines are required between explicit markup blocks and other elements, but are optional

between explicit markup blocks where unambiguous.

The explicit markup syntax is used for footnotes, citations, hyperlink targets, directives,

substitution definitions, and comments.

Footnotes

Doctree elements: footnote, label.

Each footnote consists of an explicit markup start (“.. ”), a left square bracket, the footnote

label, a right square bracket, and whitespace, followed by indented body elements. A footnote

label can be:

• a whole decimal number consisting of one or more digits,

• a single “#” (denoting auto-numbered footnotes),

• a “#” followed by a simple reference name (an autonumber label), or

• a single “*” (denoting auto-symbol footnotes).

The footnote content (body elements) must be consistently indented (by at least 3 spaces)

and left-aligned. The first body element within a footnote may often begin on the same line

as the footnote label. However, if the first element fits on one line and the indentation of the

remaining elements differ, the first element must begin on the line after the footnote label.

Otherwise, the difference in indentation will not be detected.

Footnotes may occur anywhere in the document, not only at the end. Where and how they

appear in the processed output depends on the processing system.

— 物理のかぎしっぽ http://www12.plala.or.jp/ksp/ —



reStructuredText Markup Specification 31

Here is a manually numbered footnote:

.. [1] Body elements go here.

Each footnote automatically generates a hyperlink target pointing to itself. The text of the

hyperlink target name is the same as that of the footnote label. Auto-numbered footnotes

generate a number as their footnote label and reference name. See Implicit Hyperlink Targets

for a complete description of the mechanism.

Syntax diagram:

+-------+-------------------------+

| ".. " | "[" label "]" footnote |

+-------+ |

| (body elements)+ |

+-------------------------+

Auto-Numbered Footnotes

A number sign (“#”) may be used as the first character of a footnote label to request

automatic numbering of the footnote or footnote reference.

The first footnote to request automatic numbering is assigned the label “1”, the second is

assigned the label “2”, and so on (assuming there are no manually numbered footnotes present;

see Mixed Manual and Auto-Numbered Footnotes below). A footnote which has automatically

received a label “1” generates an implicit hyperlink target with name “1”, just as if the label

was explicitly specified.

A footnote may specify a label explicitly while at the same time requesting automatic

numbering: [#label]. These labels are called autonumber labels. Autonumber labels do two

things:

• On the footnote itself, they generate a hyperlink target whose name is the autonumber

label (doesn’t include the “#”).

• They allow an automatically numbered footnote to be referred to more than once, as a

footnote reference or hyperlink reference. For example:

If [#note] is the first footnote reference, it will show up as

"[1]". We can refer to it again as [#note] and again see

"[1]". We can also refer to it as note (an ordinary internal

hyperlink reference).

.. [#note] This is the footnote labeled "note".

The numbering is determined by the order of the footnotes, not by the order of the refer-

ences. For footnote references without autonumber labels ([#] ), the footnotes and footnote

references must be in the same relative order but need not alternate in lock-step. For example:

— 物理のかぎしっぽ http://www12.plala.or.jp/ksp/ —



reStructuredText Markup Specification 32

[#] is a reference to footnote 1, and [#] is a reference to

footnote 2.

.. [#] This is footnote 1.

.. [#] This is footnote 2.

.. [#] This is footnote 3.

[#] is a reference to footnote 3.

Special care must be taken if footnotes themselves contain auto-numbered footnote references,

or if multiple references are made in close proximity. Footnotes and references are noted in the

order they are encountered in the document, which is not necessarily the same as the order in

which a person would read them.

Auto-Symbol Footnotes

An asterisk (“*”) may be used for footnote labels to request automatic symbol generation

for footnotes and footnote references. The asterisk may be the only character in the label.

For example:

Here is a symbolic footnote reference: [#] .

.. [*] This is the footnote.

A transform will insert symbols as labels into corresponding footnotes and footnote references.

The number of references must be equal to the number of footnotes. One symbol footnote

cannot have multiple references.

The standard Docutils system uses the following symbols for footnote marks*6:

• asterisk/star (“*”)

• dagger (HTML character entity “&dagger;”, Unicode U+02020)

• double dagger (“&Dagger;”/U+02021)

• section mark (“&sect;”/U+000A7)

• pilcrow or paragraph mark (“&para;”/U+000B6)

• number sign (“#”)

• spade suit (“&spades;”/U+02660)

• heart suit (“&hearts;”/U+02665)

• diamond suit (“&diams;”/U+02666)

• club suit (“&clubs;”/U+02663)

*6 This list was inspired by the list of symbols for “Note Reference Marks” in The Chicago Manual of

Style, 14th edition, section 12.51. “Parallels” (“||”) were given in CMoS instead of the pilcrow. The last

four symbols (the card suits) were added arbitrarily.

— 物理のかぎしっぽ http://www12.plala.or.jp/ksp/ —



reStructuredText Markup Specification 33

If more than ten symbols are required, the same sequence will be reused, doubled and then

tripled, and so on (“**” etc.).

Note

When using auto-symbol footnotes, the choice of output encoding is important. Many

of the symbols used are not encodable in certain common text encodings such as Latin-1

(ISO 8859-1). The use of UTF-8 for the output encoding is recommended. An alternative

for HTML and XML output is to use the “xmlcharrefreplace” output encoding error

handler.

Mixed Manual and Auto-Numbered Footnotes

Manual and automatic footnote numbering may both be used within a single document,

although the results may not be expected. Manual numbering takes priority. Only unused

footnote numbers are assigned to auto-numbered footnotes. The following example should be

illustrative:

[2] will be "2" (manually numbered),

[#] will be "3" (anonymous auto-numbered), and

[#label] will be "1" (labeled auto-numbered).

.. [2] This footnote is labeled manually, so its number is fixed.

.. [#label] This autonumber-labeled footnote will be labeled "1".

It is the first auto-numbered footnote and no other footnote

with label "1" exists. The order of the footnotes is used to

determine numbering, not the order of the footnote references.

.. [#] This footnote will be labeled "3". It is the second

auto-numbered footnote, but footnote label "2" is already used.

Citations

Citations are identical to footnotes except that they use only non-numeric labels such as

[note] or [GVR2001]. Citation labels are simple reference names (case-insensitive single words

consisting of alphanumerics plus internal hyphens, underscores, and periods; no whitespace).

Citations may be rendered separately and differently from footnotes. For example:

Here is a citation reference: [CIT2002] .

.. [CIT2002] This is the citation. It’s just like a footnote,

except the label is textual.

— 物理のかぎしっぽ http://www12.plala.or.jp/ksp/ —

file:../../user/config.html#output-encoding-error-handler
file:../../user/config.html#output-encoding-error-handler


reStructuredText Markup Specification 34

Hyperlink Targets

Doctree element: target.

These are also called explicit hyperlink targets, to differentiate them from implicit hyperlink

targets defined below.

Hyperlink targets identify a location within or outside of a document, which may be linked

to by hyperlink references.

Hyperlink targets may be named or anonymous. Named hyperlink targets consist of an

explicit markup start (“.. ”), an underscore, the reference name (no trailing underscore), a

colon, whitespace, and a link block:

.. hyperlink-name: link-block

Reference names are whitespace-neutral and case-insensitive. See Reference Names for details

and examples.

Anonymous hyperlink targets consist of an explicit markup start (“.. ”), two underscores,

a colon, whitespace, and a link block; there is no reference name:

.. : anonymous-hyperlink-target-link-block

An alternate syntax for anonymous hyperlinks consists of two underscores, a space, and a link

block:

anonymous-hyperlink-target-link-block

See Anonymous Hyperlinks below.

There are three types of hyperlink targets: internal, external, and indirect.

1. Internal hyperlink targets have empty link blocks. They provide an end point

allowing a hyperlink to connect one place to another within a document. An

internal hyperlink target points to the element following the target. For example:

Clicking on this internal hyperlink will take us to the target

below.

.. target:

The hyperlink target above points to this paragraph.

Internal hyperlink targets may be “chained”. Multiple adjacent internal hyperlink

targets all point to the same element:

.. target1:

.. target2:

The targets "target1" and "target2" are synonyms; they both

— 物理のかぎしっぽ http://www12.plala.or.jp/ksp/ —



reStructuredText Markup Specification 35

point to this paragraph.

If the element “pointed to” is an external hyperlink target (with a URI in its link

block; see #2 below) the URI from the external hyperlink target is propagated

to the internal hyperlink targets; they will all “point to” the same URI. There

is no need to duplicate a URI. For example, all three of the following hyperlink

targets refer to the same URI:

.. Python DOC-SIG mailing list archive:

.. archive:

.. Doc-SIG: http://mail.python.org/pipermail/doc-sig/

An inline form of internal hyperlink target is available; see Inline Internal Targets.

2. External hyperlink targets have an absolute or relative URI or email address in

their link blocks. For example, take the following input:

See the Python home page for info.

‘Write to me‘ with your questions.

.. Python: http://www.python.org

.. Write to me: jdoe@example.com

After processing into HTML, the hyperlinks might be expressed as:

See the <a href="http://www.python.org">Python</a> home page

for info.

<a href="mailto:jdoe@example.com">Write to me</a> with your

questions.

An external hyperlink’s URI may begin on the same line as the explicit markup

start and target name, or it may begin in an indented text block immediately

following, with no intervening blank lines. If there are multiple lines in the

link block, they are concatenated. Any whitespace is removed (whitespace is

permitted to allow for line wrapping). The following external hyperlink targets

are equivalent:

.. one-liner: http://docutils.sourceforge.net/rst.html

.. starts-on-this-line: http://

docutils.sourceforge.net/rst.html

.. entirely-below:

http://docutils.

sourceforge.net/rst.html

If an external hyperlink target’s URI contains an underscore as its last character,

it must be escaped to avoid being mistaken for an indirect hyperlink target:

— 物理のかぎしっぽ http://www12.plala.or.jp/ksp/ —



reStructuredText Markup Specification 36

This link refers to a file called ‘‘underscore ‘‘.

.. link: underscore\
It is possible (although not generally recommended) to include URIs directly

within hyperlink references. See Embedded URIs below.

3. Indirect hyperlink targets have a hyperlink reference in their link blocks. In the

following example, target “one” indirectly references whatever target “two” ref-

erences, and target “two” references target “three”, an internal hyperlink target.

In effect, all three reference the same thing:

.. one: two

.. two: three

.. three:

Just as with hyperlink references anywhere else in a document, if a phrase-

reference is used in the link block it must be enclosed in backquotes. As with

external hyperlink targets, the link block of an indirect hyperlink target may be-

gin on the same line as the explicit markup start or the next line. It may also be

split over multiple lines, in which case the lines are joined with whitespace before

being normalized.

For example, the following indirect hyperlink targets are equivalent:

.. one-liner: ‘A HYPERLINK‘

.. entirely-below:

‘a hyperlink‘

.. split: ‘A

Hyperlink‘

If a reference name contains a colon followed by whitespace, either:

• the phrase must be enclosed in backquotes:

.. ‘FAQTS: Computers: Programming: Languages: Python‘:

http://python.faqts.com/

• or the colon(s) must be backslash-escaped in the link target:

.. Chapter One\: "Tadpole Days":

It’s not easy being green...

See Implicit Hyperlink Targets below for the resolution of duplicate reference names.

Syntax diagram:

+-------+----------------------+

| ".. " | " " name ":" link |

+-------+ block |

| |

— 物理のかぎしっぽ http://www12.plala.or.jp/ksp/ —



reStructuredText Markup Specification 37

+----------------------+

Anonymous Hyperlinks

The World Wide Web Consortium recommends in its HTML Techniques for Web Content

Accessibility Guidelines that authors should “clearly identify the target of each link.” Hyper-

link references should be as verbose as possible, but duplicating a verbose hyperlink name in

the target is onerous and error-prone. Anonymous hyperlinks are designed to allow convenient

verbose hyperlink references, and are analogous to Auto-Numbered Footnotes. They are par-

ticularly useful in short or one-off documents. However, this feature is easily abused and can

result in unreadable plaintext and/or unmaintainable documents. Caution is advised.

Anonymous hyperlink references are specified with two underscores instead of one:

See ‘the web site of my favorite programming language‘ .

Anonymous targets begin with “.. :”; no reference name is required or allowed:

.. : http://www.python.org

As a convenient alternative, anonymous targets may begin with “ ” only:

http://www.python.org

The reference name of the reference is not used to match the reference to its target. Instead,

the order of anonymous hyperlink references and targets within the document is significant:

the first anonymous reference will link to the first anonymous target. The number of anony-

mous hyperlink references in a document must match the number of anonymous targets. For

readability, it is recommended that targets be kept close to references. Take care when editing

text containing anonymous references; adding, removing, and rearranging references require

attention to the order of corresponding targets.

Directives

Doctree elements: depend on the directive.

Directives are an extension mechanism for reStructuredText, a way of adding support for

new constructs without adding new primary syntax (directives may support additional syntax

locally). All standard directives (those implemented and registered in the reference reStruc-

turedText parser) are described in the reStructuredText Directives document, and are always

available. Any other directives are domain-specific, and may require special action to make

them available when processing the document.

For example, here’s how an image may be placed:

.. image:: mylogo.jpeg

A figure (a graphic with a caption) may placed like this:

— 物理のかぎしっぽ http://www12.plala.or.jp/ksp/ —

http://www.w3.org/
http://www.w3.org/TR/WCAG10-HTML-TECHS/#link-text
http://www.w3.org/TR/WCAG10-HTML-TECHS/#link-text
file:directives.html
file:directives.html#image
file:directives.html#figure


reStructuredText Markup Specification 38

.. figure:: larch.eps

The larch.

An admonition (note, caution, etc.) contains other body elements:

.. note:: This is a paragraph

- Here is a bullet list.

Directives are indicated by an explicit markup start (“.. ”) followed by the directive type,

two colons, and whitespace (together called the “directive marker”). Directive types are case-

insensitive single words (alphanumerics plus internal hyphens, underscores, and periods; no

whitespace). Two colons are used after the directive type for these reasons:

• Two colons are distinctive, and unlikely to be used in common text.

• Two colons avoids clashes with common comment text like:

.. Danger: modify at your own risk!

• If an implementation of reStructuredText does not recognize a directive (i.e., the

directive-handler is not installed), a level-3 (error) system message is generated, and

the entire directive block (including the directive itself) will be included as a literal

block. Thus “::” is a natural choice.

The directive block is consists of any text on the first line of the directive after the directive

marker, and any subsequent indented text. The interpretation of the directive block is up to

the directive code. There are three logical parts to the directive block:

1. Directive arguments.

2. Directive options.

3. Directive content.

Individual directives can employ any combination of these parts. Directive arguments can

be filesystem paths, URLs, title text, etc. Directive options are indicated using field lists;

the field names and contents are directive-specific. Arguments and options must form a

contiguous block beginning on the first or second line of the directive; a blank line indicates

the beginning of the directive content block. If either arguments and/or options are employed

by the directive, a blank line must separate them from the directive content. The “figure”

directive employs all three parts:

.. figure:: larch.eps

:scale: 50

The larch.

— 物理のかぎしっぽ http://www12.plala.or.jp/ksp/ —

file:directives.html#admonitions


reStructuredText Markup Specification 39

Simple directives may not require any content. If a directive that does not employ a content

block is followed by indented text anyway, it is an error. If a block quote should immediately

follow a directive, use an empty comment in-between (see Comments below).

Actions taken in response to directives and the interpretation of text in the directive content

block or subsequent text block(s) are directive-dependent. See reStructuredText Directives

for details.

Directives are meant for the arbitrary processing of their contents, which can be transformed

into something possibly unrelated to the original text. It may also be possible for directives to

be used as pragmas, to modify the behavior of the parser, such as to experiment with alternate

syntax. There is no parser support for this functionality at present; if a reasonable need for

pragma directives is found, they may be supported.

Directives do not generate “directive” elements; they are a parser construct only, and have

no intrinsic meaning outside of reStructuredText. Instead, the parser will transform recognized

directives into (possibly specialized) document elements. Unknown directives will trigger level-

3 (error) system messages.

Syntax diagram:

+-------+-------------------------------+

| ".. " | directive type "::" directive |

+-------+ block |

| |

+-------------------------------+

Substitution Definitions

Doctree element: substitution definition.

Substitution definitions are indicated by an explicit markup start (“.. ”) followed by a

vertical bar, the substitution text, another vertical bar, whitespace, and the definition block.

Substitution text may not begin or end with whitespace. A substitution definition block

contains an embedded inline-compatible directive (without the leading “.. ”), such as an

image. For example:

The |biohazard| symbol must be used on containers used to

dispose of medical waste.

.. |biohazard| image:: biohazard.png

It is an error for a substitution definition block to directly or indirectly contain a circular

substitution reference.

Substitution references are replaced in-line by the processed contents of the corresponding

definition (linked by matching substitution text). Matches are case-sensitive but forgiving; if

no exact match is found, a case-insensitive comparison is attempted.

— 物理のかぎしっぽ http://www12.plala.or.jp/ksp/ —

file:directives.html
file:directives.html#image


reStructuredText Markup Specification 40

Substitution definitions allow the power and flexibility of block-level directives to be shared

by inline text. They are a way to include arbitrarily complex inline structures within text,

while keeping the details out of the flow of text. They are the equivalent of SGML/XML’s

named entities or programming language macros.

Without the substitution mechanism, every time someone wants an application-specific new

inline structure, they would have to petition for a syntax change. In combination with existing

directive syntax, any inline structure can be coded without new syntax (except possibly a new

directive).

Syntax diagram:

+-------+-----------------------------------------------------+

| ".. " | "|" substitution text "| " directive type "::" data |

+-------+ directive block |

| |

+-----------------------------------------------------+

Following are some use cases for the substitution mechanism. Please note that most of the

embedded directives shown are examples only and have not been implemented.

Objects Substitution references may be used to associate ambiguous text with a unique object

identifier.

For example, many sites may wish to implement an inline “user” directive:

|Michael| and |Jon| are our widget-wranglers.

.. |Michael| user:: mjones

.. |Jon| user:: jhl

Depending on the needs of the site, this may be used to index the document for later

searching, to hyperlink the inline text in various ways (mailto, homepage, mouseover

Javascript with profile and contact information, etc.), or to customize presentation of

the text (include username in the inline text, include an icon image with a link next to

the text, make the text bold or a different color, etc.).

The same approach can be used in documents which frequently refer to a particular

type of objects with unique identifiers but ambiguous common names. Movies, albums,

books, photos, court cases, and laws are possible. For example:

|The Transparent Society| offers a fascinating alternate view

on privacy issues.

.. |The Transparent Society| book:: isbn=0738201448

Classes or functions, in contexts where the module or class names are unclear and/or

interpreted text cannot be used, are another possibility:

4XSLT has the convenience method |runString|, so you don’t

— 物理のかぎしっぽ http://www12.plala.or.jp/ksp/ —



reStructuredText Markup Specification 41

have to mess with DOM objects if all you want is the

transformed output.

.. |runString| function:: module=xml.xslt class=Processor

Images are a common use for substitution references:

Images West led the |H| 3, covered by dummy’s |H| Q, East’s |H| K,

and trumped in hand with the |S| 2.

.. |H| image:: /images/heart.png

:height: 11

:width: 11

.. |S| image:: /images/spade.png

:height: 11

:width: 11

* |Red light| means stop.

* |Green light| means go.

* |Yellow light| means go really fast.

.. |Red light| image:: red light.png

.. |Green light| image:: green light.png

.. |Yellow light| image:: yellow light.png

|-><-| is the official symbol of POEE .

.. |-><-| image:: discord.png

.. POEE: http://www.poee.org/

The “image” directive has been implemented.

Styles*7 Substitution references may be used to associate inline text with an externally defined

presentation style:

Even |the text in Texas| is big.

.. |the text in Texas| style:: big

The style name may be meaningful in the context of some particular output format

(CSS class name for HTML output, LaTeX style name for LaTeX, etc), or may be

ignored for other output formats (such as plaintext).

Templates Inline markup may be used for later processing by a template engine. For example,

*7 There may be sufficient need for a “style” mechanism to warrant simpler syntax such as an extension

to the interpreted text role syntax. The substitution mechanism is cumbersome for simple text styling.

— 物理のかぎしっぽ http://www12.plala.or.jp/ksp/ —

file:directives.html#image


reStructuredText Markup Specification 42

a Zope author might write:

Welcome back, |name|!

.. |name| tal:: replace user/getUserName

After processing, this ZPT output would result:

Welcome back,

<span tal:replace="user/getUserName">name</span>!

Zope would then transform this to something like “Welcome back, David!” during a

session with an actual user.

Replacement text The substitution mechanism may be used for simple macro substitution.

This may be appropriate when the replacement text is repeated many times throughout

one or more documents, especially if it may need to change later. A short example is

unavoidably contrived:

|RST| is a little annoying to type over and over, especially

when writing about |RST| itself, and spelling out the

bicapitalized word |RST| every time isn’t really necessary for

|RST| source readability.

.. |RST| replace:: reStructuredText

.. reStructuredText: http://docutils.sourceforge.net/rst.html

Substitution is also appropriate when the replacement text cannot be represented using

other inline constructs, or is obtrusively long:

But still, that’s nothing compared to a name like

|j2ee-cas| .

.. |j2ee-cas| replace::

the Java ‘TM‘:super: 2 Platform, Enterprise Edition Client

Access Services

http://developer.java.sun.com/developer/earlyAccess/

j2eecas/

The “replace” directive has been implemented.

Comments

Doctree element: comment.

Arbitrary indented text may follow the explicit markup start and will be processed as a

comment element. No further processing is done on the comment block text; a comment

contains a single “text blob”. Depending on the output formatter, comments may be removed

from the processed output. The only restriction on comments is that they not use the same

syntax as any of the other explicit markup constructs: substitution definitions, directives,

— 物理のかぎしっぽ http://www12.plala.or.jp/ksp/ —

http://www.zope.com/
file:directives.html#replace


reStructuredText Markup Specification 43

footnotes, citations, or hyperlink targets. To ensure that none of the other explicit markup

constructs is recognized, leave the “..” on a line by itself:

.. This is a comment

..

so: is this!

..

[and] this!

..

this:: too!

..

|even| this:: !

A explicit markup start followed by a blank line and nothing else (apart from whitespace) is

an “empty comment”. It serves to terminate a preceding construct, and does not consume

any indented text following. To have a block quote follow a list or any indented construct,

insert an unindented empty comment in-between.

Syntax diagram:

+-------+----------------------+

| ".. " | comment |

+-------+ block |

| |

+----------------------+

Implicit Hyperlink Targets

Implicit hyperlink targets are generated by section titles, footnotes, and citations, and may

also be generated by extension constructs. Implicit hyperlink targets otherwise behave iden-

tically to explicit hyperlink targets.

Problems of ambiguity due to conflicting duplicate implicit and explicit reference names are

avoided by following this procedure:

1. Explicit hyperlink targets override any implicit targets having the same reference

name. The implicit hyperlink targets are removed, and level-1 (info) system

messages are inserted.

2. Duplicate implicit hyperlink targets are removed, and level-1 (info) system mes-

sages inserted. For example, if two or more sections have the same title (such

as “Introduction” subsections of a rigidly-structured document), there will be

duplicate implicit hyperlink targets.

3. Duplicate explicit hyperlink targets are removed, and level-2 (warning) system

— 物理のかぎしっぽ http://www12.plala.or.jp/ksp/ —



reStructuredText Markup Specification 44

messages are inserted. Exception: duplicate external hyperlink targets (identical

hyperlink names and referenced URIs) do not conflict, and are not removed.

System messages are inserted where target links have been removed. See “Error Handling”

in PEP 258.

The parser must return a set of unique hyperlink targets. The calling software (such as the

Docutils) can warn of unresolvable links, giving reasons for the messages.

Inline Markup

In reStructuredText, inline markup applies to words or phrases within a text block. The

same whitespace and punctuation that serves to delimit words in written text is used to delimit

the inline markup syntax constructs. The text within inline markup may not begin or end with

whitespace. Arbitrary character-level inline markup is supported although not encouraged.

Inline markup cannot be nested.

There are nine inline markup constructs. Five of the constructs use identical start-strings

and end-strings to indicate the markup:

• emphasis: “*”

• strong emphasis: “**”

• interpreted text: “‘”

• inline literals: ““”

• substitution references: “|”

Three constructs use different start-strings and end-strings:

• inline internal targets: “ ‘” and “‘”

• footnote references: “[” and “] ”

• hyperlink references: “‘” and “‘ ” (phrases), or just a trailing “ ” (single words)

Standalone hyperlinks are recognized implicitly, and use no extra markup.

The inline markup start-string and end-string recognition rules are as follows. If any of the

conditions are not met, the start-string or end-string will not be recognized or processed.

1. Inline markup start-strings must start a text block or be immediately preceded

by whitespace or one of:

’ " ( [ { < - / :

2. Inline markup start-strings must be immediately followed by non-whitespace.

3. Inline markup end-strings must be immediately preceded by non-whitespace.

4. Inline markup end-strings must end a text block or be immediately followed by

whitespace or one of:

’ " ) ] } > - / : . , ; ! ? \
5. If an inline markup start-string is immediately preceded by a single or double

— 物理のかぎしっぽ http://www12.plala.or.jp/ksp/ —

file:../../peps/pep-0258.html
http://docutils.sourceforge.net/


reStructuredText Markup Specification 45

quote, “(”, “[”, “{”, or “<”, it must not be immediately followed by the corre-

sponding single or double quote, “)”, “]”, “}”, or “>”.

6. An inline markup end-string must be separated by at least one character from

the start-string.

7. An unescaped backslash preceding a start-string or end-string will disable markup

recognition, except for the end-string of inline literals. See Escaping Mechanism

above for details.

For example, none of the following are recognized as containing inline markup start-strings:

• asterisks: * “*” ’*’ (*) (* [*] {*} 1*x BOM32 *

• double asterisks: ** a**b O(N**2) etc.

• backquotes: ‘ “ etc.

• underscores: init init () etc.

• vertical bars: | || etc.

It may be desirable to use inline literals for some of these anyhow, especially if they represent

code snippets. It’s a judgment call.

These cases do require either literal-quoting or escaping to avoid misinterpretation:

*4, class , *args, **kwargs, ‘TeX-quoted’, *ML, *.txt

The inline markup recognition rules were devised intentionally to allow 90% of non-markup

uses of “*”, “‘”, “ ”, and “|” without resorting to backslashes. For 9 of the remaining 10%,

use inline literals or literal blocks:

"‘‘\*‘‘" -> "\*" (possibly in another font or quoted)

Only those who understand the escaping and inline markup rules should attempt the remaining

1%. ;-)

Inline markup delimiter characters are used for multiple constructs, so to avoid ambiguity

there must be a specific recognition order for each character. The inline markup recognition

order is as follows:

• Asterisks: Strong emphasis (“**”) is recognized before emphasis (“*”).

• Backquotes: Inline literals (““”), inline internal targets (leading “ ‘”, trailing “‘”), are

mutually independent, and are recognized before phrase hyperlink references (leading

“‘”, trailing “‘ ”) and interpreted text (“‘”).

• Trailing underscores: Footnote references (“[” + label + “] ”) and simple hyperlink

references (name + trailing “ ”) are mutually independent.

• Vertical bars: Substitution references (“|”) are independently recognized.

• Standalone hyperlinks are the last to be recognized.

— 物理のかぎしっぽ http://www12.plala.or.jp/ksp/ —



reStructuredText Markup Specification 46

Character-Level Inline Markup

It is possible to mark up individual characters within a word with backslash escapes (see

Escaping Mechanism above). Backslash escapes can be used to allow arbitrary text to imme-

diately follow inline markup:

Python ‘‘list‘‘\s use square bracket syntax.

The backslash will disappear from the processed document. The word “list” will appear as

inline literal text, and the letter “s” will immediately follow it as normal text, with no space

in-between.

Arbitrary text may immediately precede inline markup using backslash-escaped whitespace:

Possible in *re*\ ‘‘Structured‘‘\ *Text*, though not encouraged.

The backslashes and spaces separating “re”, “Structured”, and “Text” above will disappear

from the processed document.

Caution!

The use of backslash-escapes for character-level inline markup is not encouraged. Such

use is ugly and detrimental to the unprocessed document’s readability. Please use this

feature sparingly and only where absolutely necessary.

Emphasis

Doctree element: emphasis.

Start-string = end-string = “*”.

Text enclosed by single asterisk characters is emphasized:

This is *emphasized text*.

Emphasized text is typically displayed in italics.

Strong Emphasis

Doctree element: strong.

Start-string = end-string = “**”.

Text enclosed by double-asterisks is emphasized strongly:

This is **strong text**.

Strongly emphasized text is typically displayed in boldface.

Interpreted Text

Doctree element: depends on the explicit or implicit role and processing.

Start-string = end-string = “‘”.

— 物理のかぎしっぽ http://www12.plala.or.jp/ksp/ —



reStructuredText Markup Specification 47

Interpreted text is text that is meant to be related, indexed, linked, summarized, or otherwise

processed, but the text itself is typically left alone. Interpreted text is enclosed by single

backquote characters:

This is ‘interpreted text‘.

The “role” of the interpreted text determines how the text is interpreted. The role may be

inferred implicitly (as above; the “default role” is used) or indicated explicitly, using a role

marker. A role marker consists of a colon, the role name, and another colon. A role name is

a single word consisting of alphanumerics plus internal hyphens, underscores, and periods; no

whitespace or other characters are allowed. A role marker is either a prefix or a suffix to the

interpreted text, whichever reads better; it’s up to the author:

:role:‘interpreted text‘

‘interpreted text‘:role:

Interpreted text allows extensions to the available inline descriptive markup constructs. To

emphasis, strong emphasis, inline literals, and hyperlink references, we can add “title refer-

ence”, “index entry”, “acronym”, “class”, “red”, “blinking” or anything else we want. Only

pre-determined roles are recognized; unknown roles will generate errors. A core set of standard

roles is implemented in the reference parser; see reStructuredText Interpreted Text Roles for

individual descriptions. In addition, applications may support specialized roles.

Inline Literals

Doctree element: literal.

Start-string = end-string = ““”.

Text enclosed by double-backquotes is treated as inline literals:

This text is an example of ‘‘inline literals‘‘.

Inline literals may contain any characters except two adjacent backquotes in an end-string

context (according to the recognition rules above). No markup interpretation (including

backslash-escape interpretation) is done within inline literals.

Line breaks are not preserved in inline literals. Although a reStructuredText parser will

preserve runs of spaces in its output, the final representation of the processed document is

dependent on the output formatter, thus the preservation of whitespace cannot be guaranteed.

If the preservation of line breaks and/or other whitespace is important, literal blocks should

be used.

Inline literals are useful for short code snippets. For example:

The regular expression ‘‘[+-]?(\d+(\.\d*)?|\.\d+)‘‘ matches

floating-point numbers (without exponents).

— 物理のかぎしっぽ http://www12.plala.or.jp/ksp/ —

file:roles.html


reStructuredText Markup Specification 48

Hyperlink References

Doctree element: reference.

• Named hyperlink references:

– Start-string = “” (empty string), end-string = “ ”.

– Start-string = “‘”, end-string = “‘ ”. (Phrase references.)

• Anonymous hyperlink references:

– Start-string = “” (empty string), end-string = “ ”.

– Start-string = “‘”, end-string = “‘ ”. (Phrase references.)

Hyperlink references are indicated by a trailing underscore, “ ”, except for standalone hyper-

links which are recognized independently. The underscore can be thought of as a right-pointing

arrow. The trailing underscores point away from hyperlink references, and the leading under-

scores point toward hyperlink targets.

Hyperlinks consist of two parts. In the text body, there is a source link, a reference name

with a trailing underscore (or two underscores for anonymous hyperlinks):

See the Python home page for info.

A target link with a matching reference name must exist somewhere else in the document.

See Hyperlink Targets for a full description).

Anonymous hyperlinks (which see) do not use reference names to match references to targets,

but otherwise behave similarly to named hyperlinks.

Embedded URIs

A hyperlink reference may directly embed a target URI inline, within angle brackets

(“<...>”) as follows:

See the ‘Python home page <http://www.python.org>‘ for info.

This is exactly equivalent to:

See the ‘Python home page‘ for info.

.. Python home page: http://www.python.org

The bracketed URI must be preceded by whitespace and be the last text before the end string.

With a single trailing underscore, the reference is named and the same target URI may be

referred to again.

With two trailing underscores, the reference and target are both anonymous, and the target

cannot be referred to again. These are “one-off” hyperlinks. For example:

‘RFC 2396 <http://www.rfc-editor.org/rfc/rfc2396.txt>‘ and ‘RFC

— 物理のかぎしっぽ http://www12.plala.or.jp/ksp/ —



reStructuredText Markup Specification 49

2732 <http://www.rfc-editor.org/rfc/rfc2732.txt>‘ together

define the syntax of URIs.

Equivalent to:

‘RFC 2396‘ and ‘RFC 2732‘ together define the syntax of URIs.

http://www.rfc-editor.org/rfc/rfc2396.txt

http://www.rfc-editor.org/rfc/rfc2732.txt

If reference text happens to end with angle-bracketed text that is not a URI, the open-angle-

bracket needs to be backslash-escaped. For example, here is a reference to a title describing a

tag:

See ‘HTML Element: \<a>‘ below.

The reference text may also be omitted, in which case the URI will be duplicated for use as

the reference text. This is useful for relative URIs where the address or file name is also the

desired reference text:

See ‘<a named relative link>‘ or ‘<an anonymous relative link>‘

for details.

Caution!

This construct offers easy authoring and maintenance of hyperlinks at the expense of

general readability. Inline URIs, especially long ones, inevitably interrupt the natural

flow of text. For documents meant to be read in source form, the use of independent

block-level hyperlink targets is strongly recommended. The embedded URI construct

is most suited to documents intended only to be read in processed form.

Inline Internal Targets

Doctree element: target.

Start-string = “ ‘”, end-string = “‘”.

Inline internal targets are the equivalent of explicit internal hyperlink targets, but may

appear within running text. The syntax begins with an underscore and a backquote, is followed

by a hyperlink name or phrase, and ends with a backquote. Inline internal targets may not

be anonymous.

For example, the following paragraph contains a hyperlink target named “Norwegian Blue”:

Oh yes, the ‘Norwegian Blue‘. What’s, um, what’s wrong with it?

See Implicit Hyperlink Targets for the resolution of duplicate reference names.

— 物理のかぎしっぽ http://www12.plala.or.jp/ksp/ —



reStructuredText Markup Specification 50

Footnote References

Doctree element: footnote reference.

Start-string = “[”, end-string = “] ”.

Each footnote reference consists of a square-bracketed label followed by a trailing underscore.

Footnote labels are one of:

• one or more digits (i.e., a number),

• a single “#” (denoting auto-numbered footnotes),

• a “#” followed by a simple reference name (an autonumber label), or

• a single “*” (denoting auto-symbol footnotes).

For example:

Please RTFM [1] .

.. [1] Read The Fine Manual

Citation References

Doctree element: citation reference.

Start-string = “[”, end-string = “] ”.

Each citation reference consists of a square-bracketed label followed by a trailing under-

score. Citation labels are simple reference names (case-insensitive single words, consisting of

alphanumerics plus internal hyphens, underscores, and periods; no whitespace).

For example:

Here is a citation reference: [CIT2002] .

See Citations for the citation itself.

Substitution References

Doctree element: substitution reference, reference.

Start-string = “|”, end-string = “|” (optionally followed by “ ” or “ ”).

Vertical bars are used to bracket the substitution reference text. A substitution reference

may also be a hyperlink reference by appending a “ ” (named) or “ ” (anonymous) suffix; the

substitution text is used for the reference text in the named case.

The processing system replaces substitution references with the processed contents of the

corresponding substitution definitions (which see for the definition of “correspond”). Substi-

tution definitions produce inline-compatible elements.

Examples:

This is a simple |substitution reference|. It will be replaced by

— 物理のかぎしっぽ http://www12.plala.or.jp/ksp/ —



reStructuredText Markup Specification 51

the processing system.

This is a combination |substitution and hyperlink reference| . In

addition to being replaced, the replacement text or element will

refer to the "substitution and hyperlink reference" target.

Standalone Hyperlinks

Doctree element: reference.

Start-string = end-string = “” (empty string).

A URI (absolute URI*8 or standalone email address) within a text block is treated as a

general external hyperlink with the URI itself as the link’s text. For example:

See http://www.python.org for info.

would be marked up in HTML as:

See <a href="http://www.python.org">http://www.python.org</a> for

info.

Two forms of URI are recognized:

1. Absolute URIs. These consist of a scheme, a colon (“:”), and a scheme-specific

part whose interpretation depends on the scheme.

The scheme is the name of the protocol, such as “http”, “ftp”, “mailto”, or “tel-

net”. The scheme consists of an initial letter, followed by letters, numbers, and/or

“+”, “-”, “.”. Recognition is limited to known schemes, per the Official IANA

Registry of URI Schemes and the W3C’s Retired Index of WWW Addressing

Schemes.

The scheme-specific part of the resource identifier may be either hierarchical or

opaque:

• Hierarchical identifiers begin with one or two slashes and may use slashes to

separate hierarchical components of the path. Examples are web pages and

FTP sites:

http://www.python.org

ftp://ftp.python.org/pub/python

• Opaque identifiers do not begin with slashes. Examples are email addresses

and newsgroups:

mailto:someone@somewhere.com

news:comp.lang.python

With queries, fragments, and %-escape sequences, URIs can become quite com-

— 物理のかぎしっぽ http://www12.plala.or.jp/ksp/ —

http://www.iana.org/assignments/uri-schemes
http://www.iana.org/assignments/uri-schemes
http://www.w3.org/Addressing/schemes.html
http://www.w3.org/Addressing/schemes.html


reStructuredText Markup Specification 52

plicated. A reStructuredText parser must be able to recognize any absolute URI,

as defined in RFC2396 and RFC2732.

2. Standalone email addresses, which are treated as if they were absolute URIs with

a “mailto:” scheme. Example:

someone@somewhere.com

Punctuation at the end of a URI is not considered part of the URI, unless the URI is termi-

nated by a closing angle bracket (“>”). Backslashes may be used in URIs to escape markup

characters, specifically asterisks (“*”) and underscores (“ ”) which are vaid URI characters

(see Escaping Mechanism above).

Units

(New in Docutils 3.4.10.)

All measures consist of a positive floating point number in standard (non-scientific) notation

and a unit, possibly separated by one or more spaces.

Units are only supported where explicitly mentioned in the reference manuals.

Length Units

The following length units are supported by the reStructuredText parser:

• em (ems, the height of the element’s font)

• ex (x-height, the height of the letter “x”)

• px (pixels, relative to the canvas resolution)

• in (inches; 1in=2.54cm)

• cm (centimeters; 1cm=10mm)

• mm (millimeters)

• pt (points; 1pt=1/72in)

• pc (picas; 1pc=12pt)

(List and explanations taken from http://www.htmlhelp.com/reference/css/units.html#length.)

The following are all valid length values: “1.5em”, “20 mm”, “.5in”.

*8 Uniform Resource Identifier. URIs are a general form of URLs (Uniform Resource Locators). For the

syntax of URIs see RFC2396 and RFC2732.

— 物理のかぎしっぽ http://www12.plala.or.jp/ksp/ —

http://www.rfc-editor.org/rfc/rfc2396.txt
http://www.rfc-editor.org/rfc/rfc2732.txt
http://www.htmlhelp.com/reference/css/units.html#length
http://www.rfc-editor.org/rfc/rfc2396.txt
http://www.rfc-editor.org/rfc/rfc2732.txt


reStructuredText Markup Specification 53

Percentage Units

Percentage values have a percent sign (“%”) as unit. Percentage values are relative to other

values, depending on the context in which they occur.

Error Handling

Doctree element: system message, problematic.

Markup errors are handled according to the specification in PEP 258.

— 物理のかぎしっぽ http://www12.plala.or.jp/ksp/ —

file:../../peps/pep-0258.html

	Contents
	Quick Syntax Overview
	 

	Syntax Details
	 
	Whitespace
	Blank Lines
	Indentation

	Escaping Mechanism
	Reference Names
	Document Structure
	Document
	Sections
	Transitions

	Body Elements
	Paragraphs
	Bullet Lists
	Enumerated Lists
	Definition Lists
	Field Lists
	Option Lists
	Literal Blocks
	Line Blocks
	Block Quotes
	Doctest Blocks
	Tables
	Explicit Markup Blocks

	Implicit Hyperlink Targets
	Inline Markup
	Character-Level Inline Markup
	Emphasis
	Strong Emphasis
	Interpreted Text
	Inline Literals
	Hyperlink References
	Inline Internal Targets
	Footnote References
	Citation References
	Substitution References
	Standalone Hyperlinks

	Units
	Length Units
	Percentage Units


	Error Handling
	 


